# Summary of Pesticide Use Report Data 2006



California Department of Pesticide Regulation P.O. Box 4015 Sacramento, CA 95812-4015

# California Environmental Protection Agency Department of Pesticide Regulation

Arnold Schwarzenegger, Governor

**Linda S. Adams**, Secretary California Environmental Protection Agency

> Mary-Ann Warmerdam, Director Department of Pesticide Regulation

#### November 2007

Any portion of this report may be reproduced for any but profit-making purposes. For information on purchase of additional copies or of electronic data files, see order form on Page ii. This report is also available on DPR's Web site <www.cdpr.ca.gov>.

If you have questions concerning this report, call (916) 445-4038.

# TABLE OF CONTENTS

| ORDER FORM                                                             | iii                               |
|------------------------------------------------------------------------|-----------------------------------|
| I. INTRODUCTION                                                        | 1                                 |
| DEVELOPMENT AND IMPLEMENTATION OF THE PESTICIDE                        | USE REPORTING SYSTEM 1            |
| TYPES OF PESTICIDE APPLICATIONS REPORTED                               | 1                                 |
| HOW PESTICIDE DATA ARE USED                                            | 2                                 |
| Risk Assessment                                                        | 2                                 |
| Worker Health and Safety                                               | 3                                 |
| Public Health                                                          | 3                                 |
| Endangered Species                                                     | 3                                 |
| Water Quality                                                          | 3                                 |
| Air Quality                                                            | 4                                 |
| Pest Management                                                        | 4                                 |
| Processor and Retailer Requirements                                    | 5                                 |
| II. COMMENTS AND CLARIFICATIONS OF DATA                                | 6                                 |
| TERMINOLOGY                                                            | 6                                 |
| COMMODITY CODES                                                        | 6                                 |
| UNREGISTERED USE                                                       | 7                                 |
| ADJUVANTS                                                              | 7                                 |
| ZERO POUNDS APPLIED                                                    | 7                                 |
| ACRES TREATED                                                          | 8                                 |
| NUMBER OF APPLICATIONS                                                 | 8                                 |
| OUTLIERS                                                               | 8                                 |
| III. DATA SUMMARY                                                      | 10                                |
| PESTICIDE USE IN CALIFORNIA                                            | 10                                |
| PESTICIDE SALES IN CALIFORNIA                                          | 10                                |
| Table of pounds of pesticide active ingredients reported in each count | y and rank during 2005 and 200611 |

| V. TRENDS IN PESTICIDE USE IN CERTAIN COMMODITIES                                               | 61      |
|-------------------------------------------------------------------------------------------------|---------|
| USE TRENDS OF BIOPESTICIDES                                                                     | 49      |
| USE TRENDS OF OIL PESTICIDES                                                                    | 46      |
| USE TRENDS OF FUMIGANT PESTICIDES                                                               | 43      |
| USE TRENDS OF PESTICIDES ON DPR'S TOXIC AIR CONTAMINANTS LIST                                   | 36      |
| USE TRENDS OF PESTICIDES ON DPR'S GROUND WATER PROTECTION LIST                                  | 34      |
| USE TRENDS OF CHOLINESTERASE-INHIBITING PESTICIDES                                              | 27      |
| "KNOWN TO CAUSE CANCER"                                                                         | 22      |
| USE TRENDS OF PESTICIDES LISTED BY U.S. EPA AS CARCINOGENS OR BY THE ST                         | ΓATE AS |
| THAT ARE "KNOWN TO CAUSE REPRODUCTIVE TOXICITY"                                                 | 17      |
| USE TRENDS OF PESTICIDES ON THE STATE'S PROPOSITION 65 LIST OF CHEMICAL                         | LS      |
| IV. TRENDS IN USE IN CERTAIN PESTICIDE CATEGORIES                                               | 13      |
| Table of pounds of pesticide active ingredients used from 1996 – 2006 by general use categories | s12     |

Questions regarding the Summary of Pesticide Use Report Data or information regarding the availability and cost of the computerized database should be directed to: Department of Pesticide Regulation, Pest Management and Licensing Branch, P.O. Box 4015, Sacramento, California 95812-4015. Telephone (916) 445-4038 or email questions to clichtenberger@cdpr.ca.gov>.

#### **Order Form**

To continue to make the *Summary of Pesticide Use Report Data* available, it is necessary to charge for the costs of reproduction and mailing. The reports can also be downloaded free of charge from the Department's web site.

The 1989 - 2006 Summary of Pesticide Use Report Data indexed by chemical or commodity reports can be found on DPR's web at <a href="www.cdpr.ca.gov">www.cdpr.ca.gov</a>. The Summary of Pesticide Use Report Data is available in two formats. One report is indexed by chemical and lists the amount of each pesticide used, the commodity on which it was used, the number of agricultural applications, and the acres/units treated. The second report is indexed by commodity and lists the chemicals used, the number of agricultural applications, amount of pesticides used, and the acres/units treated.

The Annual Pesticide Use Report Data (the complete database of reported pesticide applications for 1990-2005) are available on CD ROM. The files are in text (comma delimited format).

Please use this form to order reports and enclose payment to the address below.

Enclose payment to: Cashier, State of California

California Pesticide Use Report Order Form

| Item | Report                                                                                           | Quantity | Amount  | Total |
|------|--------------------------------------------------------------------------------------------------|----------|---------|-------|
| 603  | Summary Report by Commodity (year) (printed)                                                     |          | \$10.00 |       |
| 604  | Summary Report by Chemical (year) (printed)                                                      |          | \$10.00 |       |
| 605  | Summary Report by Commodity <u>or</u> Chemical (circle one) (year) (disk) (discontinued in 2001) |          | N/A     |       |
| 608  | Annual Pesticide Use Report Data (CD ROM) (year) (available from 1990) (text format)             |          | \$12.00 |       |
| TOTA | L                                                                                                |          |         | \$    |

|         | Department of Pesticide Regu<br>P.O. Box 4015<br>Sacramento, California 9581 |         |     |
|---------|------------------------------------------------------------------------------|---------|-----|
| NAME    |                                                                              |         |     |
| ADDRESS |                                                                              |         |     |
| CITY    |                                                                              | STATE   | ZIP |
| COMPANY |                                                                              | PHONE ( | )   |

#### I. INTRODUCTION

#### DEVELOPMENT AND IMPLEMENTATION OF THE PESTICIDE USE REPORTING SYSTEM

This 2006 Summary of Pesticide Use Report Data includes agricultural applications and other selected uses reported in California. The report represents a summary of the data gathered under full use reporting. The Department of Pesticide Regulation (DPR) uses the data to help estimate dietary risk and to ensure compliance with clean air laws as well as ground water protection regulations. Site-specific use report data, combined with geographic data on endangered species habitats, also helps county agricultural commissioners resolve potential pesticide use conflicts. Detailed, individual pesticide use report data may be obtained from DPR for in-depth, analytical purposes.

Under full use reporting, which began in 1990, California became the first state to require reporting of all agricultural pesticide use, including amounts applied and types of crops or places (e.g., structures, roadsides) treated. Commercial applications—including structural fumigation, pest control, and turf applications—must also be reported. Pesticide use reporting is explained in more detail below.

#### TYPES OF PESTICIDE APPLICATIONS REPORTED

Partial reporting of agricultural pesticide use has been in place in California since at least the 1950s. Beginning in 1970, anyone who used restricted materials was required to file a pesticide use report with the county agricultural commissioner. The criteria established to designate a pesticide as a restricted material include potential hazard to:

- public health
- farm workers
- domestic animals
- honeybees
- the environment
- wildlife
- other crops

Restricted materials, with certain exceptions, may be possessed or used only by, or under the supervision of, licensed or certified persons and only in accordance with an annual permit issued by a county agricultural commissioner.

In addition, the State required commercial pest control operators<sup>1</sup> to report all pesticides used, whether restricted or nonrestricted. These reports included information about the pesticide applied, when and where the application was made, and the crop involved if the application was in agriculture. The reports were entered into a computerized database and summarized by chemical and crop in annual reports.

<sup>&</sup>lt;sup>1</sup> Pest control operators include those in the business of applying pesticides such as agricultural applicators, structural fumigators, and professional gardeners.

With implementation of full use reporting in 1990, the following pesticide uses are required to be reported to the commissioner, who, in turn, reports the data to DPR:

- For the production of any agricultural commodity, except livestock.
- For the treatment of postharvest agricultural commodities.
- For landscape maintenance in parks, golf courses, and cemeteries.
- For roadside and railroad rights-of-way.
- For poultry and fish production.
- Any application of a restricted material.
- Any application of a pesticide with the potential to pollute ground water (listed in section 6800 (b) of the California Code of Regulations, Title 3, Division 6, Chapter 4, Subchapter 1, Article 1) when used outdoors in industrial and institutional settings.
- Any application by a licensed pest control operator.

The primary exceptions to the use reporting requirements are home and garden use and most industrial and institutional uses.

#### HOW PESTICIDE DATA ARE USED

DPR undertook the expansion of use reporting primarily in response to concerns of many individuals and groups, including government officials, scientists, farmers, legislators, and public interest groups. It was generally acknowledged that the system for estimating dietary exposure to pesticide residues did not provide sufficient data on which to make realistic assessments; this often resulted in overestimates of risk. Farm worker representatives were also asking for more information to determine exposure and potential risk to those who handle pesticides or who work in treated fields.

There are several key areas in which data generated by full use reporting are proving beneficial.

#### **Risk Assessment**

Without information on actual pesticide use, regulatory agencies conducting risk assessment assume all planted crop acreage is treated with many pesticides, even though most crops are treated with just a few chemicals. If the assumptions used by regulatory agencies are incorrect, regulators could make judgments on pesticide risks that are too cautious by several orders of magnitude, reducing the credibility of risk management decisions. The use report data, on the other hand, provides actual use data so DPR can better assess risk and make more realistic risk management decisions.

After the passage of the federal Food Quality Protection Act (FQPA) in 1996, complete pesticide use data became even more important to commodity groups in California and to the U.S. Environmental Protection Agency (U.S. EPA). FQPA contains a new food safety standard against which all pesticide tolerances must be measured. The increased interest in the state's pesticide use data, especially for calculating percent crop treated, came at a time when DPR was increasing the efficiency with which it produced its annual report.

DPR was able to provide up-to-date use data and summaries to commodity groups, University of California specialists, U.S. EPA programs, and other interested parties as they developed the necessary information for the reassessment of existing tolerances.

## **Worker Health and Safety**

Under the reporting regulations, pest control operators must give farmers a written notice after every pesticide application that includes the date and time the application was completed, and the reentry and preharvest intervals.<sup>2</sup> This notice gives the farmer accurate information to help keep workers from entering fields prematurely, and also lets the farmer know the earliest date a commodity can be harvested.

DPR's Worker Health and Safety Branch also uses the data for worker exposure assessment as part of developing an overall risk characterization document. Use data helps scientists estimate typical applications and how often pesticides are used.

#### **Public Health**

The expanded reporting system provides DPR, the State Department of Health Services, and the Office of Environmental Health Hazards Assessment with more complete pesticide use data for evaluating possible human illness clusters in epidemiological studies

## **Endangered Species**

DPR works with the county agricultural commissioners to combine site-specific use report data with geographic information system-based data on locations of endangered species. The resulting database helps commissioners resolve potential conflicts over pesticide use where endangered species may occur. DPR and the commissioners can also examine patterns of pesticide use near habitats to determine the potential impact of proposed use limitations. With location-specific data on pesticide use, restrictions on use can be better designed to protect endangered species while still allowing necessary pest control.

#### **Water Quality**

Since 1983, DPR has had a program to work with the rice industry and the Central Valley Regional Water Quality Control Board to reduce contamination of surface water by rice pesticides. Using PUR data to help in pinpointing specific agricultural practices, more precise alternative use recommendations can be made to assure protection of surface water.

The Pesticide Contamination Prevention Act requires site-specific records to help track pesticide use in areas known to be susceptible to ground water contamination. Determinations can also be made from the records on whether a contaminated well is physically associated with agricultural practices. These records also provide data to help

<sup>&</sup>lt;sup>2</sup> A reentry interval is the time from which a pesticide application is made and when workers may enter a field. A preharvest interval is the time between an application and when a commodity can be harvested.

researchers determine why certain soil types are more prone to ground water contamination.

DPR placed certain pesticide products containing pyrethroids into reevaluation on August 31, 2006. The reevaluation is based on recent studies revealing the widespread presence of synthetic pyrethroid residues in the sediment of California waterways at levels toxic to an aquatic crustacean.

## **Air Quality**

Many pesticide products contain volatile organic compounds (VOCs) that contribute to the formation of smog. DPR worked with the state Air Resources Board to put together a State Implementation Plan under the federal Clean Air Act to reduce emissions of all sources of VOCs, including pesticides, in nonattainment areas of the state. DPR's contribution to the plan included accurate data on the amount of VOCs contained in pesticides and the ability to inventory the use of those pesticides through pesticide use reporting.

Beginning in January 2008, a new regulation will provide a more accurate estimate of VOC emissions as well as reductions of VOC emissions. A key element of the regulation pertains to field fumigation methods because different fumigation methods emit different amounts of VOCs. Within nonattainment areas, the regulation requires PURs to include the specific fumigation method to better estimate VOC emissions.

#### **Pest Management**

The Department uses the PUR database to understand patterns and changes in pest management practices. This information can be used to determine possible alternatives to pesticides that are subject to regulatory actions and to help determine possible impacts of different regulatory actions on pest management.

The PUR is used to help meet the needs of FQPA, which requires pesticide use information for determining the appropriateness of pesticide residue tolerances. As part of this process many commodity groups have created crop profiles, which include information on the pest management practices and available options, both chemical and nonchemical. Pesticide use data is critical to developing these lists of practices and options.

The PUR data have been used to support and assess grant projects for a grant program conducted by DPR to develop, demonstrate and implement reduced-hazard pest management strategies from 1995 to 2003. The grants were temporarily suspended due to the statewide budget shortfall, but funds are currently available to offer grants. The PUR data have been used in several projects that build on work conducted in our grant program in the almond and stonefruit industries. In these and other projects, the PUR data are used to address regional pesticide use patterns and environmental problems such as water and air quality. The data are also used to better understand current changes in pesticide use.

DPR has published general analyses of statewide pesticide use patterns and trends. The first analysis covered the years 1991 to 1995, and the second more detailed analysis covered 1991 to 1996. These analyses identified high-use pesticides, the crops to which those pesticides were applied, trends in use, and the pesticides most responsible for changes in use. In addition, since 1997, the annual Summary of Pesticide Use Report Data reports include summary trends of pesticides in several different categories such as carcinogens, reproductive toxins, and ground water contaminants.

# **Processor and Retailer Requirements**

Food processors, produce packers, and retailers often require farmers to submit a complete history of pesticide use on crops. DPR's use report form often satisfies this requirement.

#### II. COMMENTS AND CLARIFICATIONS OF DATA

The following comments and points should be taken into consideration when analyzing data contained in this report:

#### **TERMINOLOGY**

The following terminology is used in this report:

Number of agricultural applications – Number of applications of pesticide products made to production agriculture. More detailed information is given below under "Number of Applications."

*Pounds applied* – Number of pounds of an active ingredient.

*Unit type* – The amount listed in this column is one of the following:

A = Acreage

C = Cubic feet (of commodity treated)

K = Thousand cubic feet (of commodity treated)

P = Pounds (of commodity treated)

S = Square feet

T = Tons (of commodity treated)

U = Miscellaneous units (e.g., number of tractors, trees, tree holes, bins, etc.)

#### **COMMODITY CODES**

DPR's pesticide product label database is used to cross-check data entries to determine if the product reported is registered for use on the reported commodity. The DPR label database uses a crop coding system based on crop names used by the U.S. EPA to prepare official label language. However, this system caused some problems until DPR modified it in the early 1990s to account for U.S. EPA's grouping of certain crops under generic names. Problems occurred when the label language in the database called a crop by one name, and the use report used another. For example, a grower may have reported a pesticide use on "almonds," but the actual label on the pesticide product--coded into the database--stated the pesticide was to be used on "nuts." DPR modified the database to eliminate records being rejected as "errors" because the specific commodity listed on the use report is not on the label. A qualifier code is appended to the commodity code in the label database to designate a commodity not specifically listed on the label as a correct use. A qualifier code would be attached to the "almond" code when nuts are only listed on the label. This system greatly reduces the number of rejections.

Plants and commodities grown in greenhouse and nursery operations represented a challenge in use reporting because of their diversity. Six commodity groupings were suggested by industry in 1990 and incorporate terminology that are generally known and accepted. The six use reporting categories are: greenhouse-grown cut flowers or greens; outdoor-grown cut flowers or greens; greenhouse-grown plants in containers; outdoor-grown plants in container/field-grown plants; greenhouse-grown transplants/propagative material; and outdoor-grown transplants/propagative material.

Tomatoes and grapes were also separated into two categories because of public and processor interest in differentiating pesticide use. Tomatoes are assigned two codes to differentiate between fresh market and processing categories. One code was assigned to table grapes, which includes grapes grown for fresh market, raisins, canning, or juicing. A second code was assigned to wine grapes.

#### **UNREGISTERED USE**

The report contains entries that reflect the use of a pesticide on a commodity for which the pesticide is not currently registered. This sometimes occurs because the original use report was in error, that is, either the pesticide or the commodity was inaccurately reported. DPR's computer program checks that the commodity is listed on the label, but nonetheless such errors appear in the PUR, possibly because of errors in the label database. Also, the validation program does not check whether the pesticide product was registered at the time of application. For example, parathion (ethyl parathion) is shown reported on crops after most uses were suspended in 1992. (These records are researched and corrected as time and resources allow.) DPR continues to implement methods that identify and reduce these types of reporting errors in future reports. Other instances may occur because by law, growers are sometimes allowed to use stock they have on hand of a pesticide product that has been withdrawn from the market by the manufacturer or suspended or canceled by regulatory authorities.

Other reporting "errors" may occur when a pesticide is applied directly to a site to control a particular pest, but is not applied directly to the crop in the field. A grower may use an herbicide to treat weeds on the edge of a field, a fumigant on bare soil prior to planting, or a rodenticide to treat rodent burrows. For example, reporting the use of the herbicide glyphosate on tomatoes – when it was actually applied to bare soil prior to planting the tomatoes – could be perceived to be an error. Although technically incorrect, recording the data as if the application were made directly to the commodity provides valuable crop usage information for DPR's regulatory program.

#### **ADJUVANTS**

Data on spray adjuvants (including emulsifiers, wetting agents, foam suppressants, and other efficacy enhancers), not reported prior to full use reporting, are now included. Examples of these types of chemicals include the "alkyls" and some petroleum distillates. (Adjuvants are exempt from federal registration requirements, but must be registered as pesticides in California.)

#### ZERO POUNDS APPLIED

There are a few entries in this report in which the total pounds applied for certain active ingredients are displayed as zero. This is because the chemical (active ingredient) made up a very small percentage of the formulated product that was used. When these products are applied in extremely low quantities, the resulting value of the active ingredient is too low to register an amount.

#### ACRES TREATED

The summary information in this annual report cannot be used to determine the total number of acres of a crop. However, it can be used to determine the cumulative acres treated. The problem is that the same field can be treated more than once in a year with the same active ingredient. A similar problem occurs when the product used contains more than one active ingredient. (In any pesticide product, the active ingredient is the component that kills, or otherwise controls, target pests. A pesticide product is made up of one or more active ingredients, as well as one or more inert ingredients.) For example, if a 20-acre field is treated with a product that contains three different pesticide active ingredients, a use report is filed by the farmer correctly recording the application of a single pesticide product to 20 acres. However, in the summary tables, the three different active ingredients will each have recorded 20 acres treated. Adding these values results in a total of 60 acres as being treated instead of the 20 acres actually treated.

#### NUMBER OF APPLICATIONS

The values for number of applications include only production agricultural applications. Applicators are required to submit one of two basic types of use reports, a production agricultural report or a monthly summary report. The production agricultural report must include information for each application. The monthly summary report, for all uses other than production agriculture, includes only monthly totals for all applications of pesticide product, site or commodity, and applicator. The total number of applications in the monthly summary reports is not consistently given so they are no longer included in the totals. In the annual PUR reports before 1997, each monthly summary record was counted as one application.

In the annual summary report by commodity, the total number of applications given for each commodity may not equal the sum of all applications of each active ingredient on that commodity. As explained above, some pesticide products contain more than one active ingredient. If the number of applications were summed for each active ingredient in such a product, the total number of applications would be more than one, even though only one application of the product was made.

#### **OUTLIERS**

In calculating the total pounds of pesticides used in these tables, DPR excluded values for rates of use that were so large they were probably in error. Errors occur, for example, when those reporting pesticide use shift decimal points during data entry. DPR specialists spent more than a year developing, testing, and implementing software to detect probable errors (outliers). Pesticide rates were considered outliers if (1) they were higher than 200 pounds of active ingredient per acre (or greater than 1,000 pounds per acre for fumigants); (2) they were 50 times larger than the median rate for all uses with the same pesticide product, crop treated, unit treated, and record type (that is, production agricultural or all other uses); or (3) they were higher than a value determined by a neural network procedure that approximates what a group of 12 scientists believed were obvious outliers. Although these criteria removed less than one percent of the rate values in the PUR, some rates were so large that if included in the sums, they would have significantly

affected total pounds applied of some pesticides. (The outliers are excluded from the total pounds in the summary reports but remain in the database.)

For the years 1991 to 1998, we determined whether or not a use rate was an outlier based on the distribution of rates for all applications on each crop and pesticide during the year of its application. Beginning with the 1999 PUR, we determined outliers in two stages. In the first stage, outliers were identified as data that came to DPR from the counties during the year but based on the distribution of rates from the previous year. This procedure allowed us to include outliers in the error reports sent back to the counties. In the second stage, the outlier program was run after all the current year data were received using the distribution of rates for that year. This procedure found additional outliers for new products and new uses. We currently use the two-stage procedure.

Beginning with the 1999 PUR data, values have been substituted where outliers were identified in the first phase. Nulls were substituted in numeric fields identified as outliers, and "???" were substituted in character fields identified as outliers. A median rate value for use on a commodity/product combination was substituted where a high rate per acre was the error. In addition, "Unknown" was substituted where the reported site code was invalid.

#### III. DATA SUMMARY

This report is a summary of data submitted to DPR. Total pounds may change slightly due to ongoing error correction. The revised numbers, when available, will more accurately reflect the total pounds applied.

#### PESTICIDE USE IN CALIFORNIA

In 2006, there were 189,576,938 pounds of pesticide active ingredients reported used in California. Annual use has varied from year to year since full use reporting was implemented in 1990. For example, reported pesticide use was 195 million pounds in 2005, 180 million pounds in 2004, 176 million pounds in 2003, and 170 million pounds in 2002.

Such variances are, and will continue to be, a normal occurrence. These fluctuations can be attributed to a variety of factors, including changes in planted acreage, crop plantings, pest pressures, and weather conditions. For example, extremely heavy rains result in excessive weeds, thus more pesticides may be used; drought conditions may result in fewer planted acres, thus less pesticide may be used.

As in previous years, the greatest pesticide use occurred in California's San Joaquin Valley (Table 1). Four counties in this region had the highest use: Fresno, Kern, Tulare, and San Joaquin.

Table 2 breaks down the pounds of pesticide use by general use categories: production agriculture, post-harvest commodity fumigation, structural pest control, landscape maintenance, and all others.

#### PESTICIDE SALES IN CALIFORNIA

Reported pesticide applications are only a portion of the pesticides sold each year. Typically, about two-thirds of the pesticide active ingredients sold in a given year are not subject to use reporting. Examples of non-reported active ingredients are chlorine (used primarily for municipal water treatment) and home-use pesticide products.

Sales data for 2006 are in the process of being reviewed and will be released in January 2008, so are not yet available for this report. There were 611 million pounds sold in 2005, 667 million pounds 2004, 661 million pounds in 2003, and 598 million pounds in 2002. Prior years data are posted on DPR's web site at <a href="www.cdpr.ca.gov">www.cdpr.ca.gov</a> under programs & services/mill assessment/report of pesticides sold in California.

In addition, it should be noted that the pounds of pesticides used and the number of applications are not necessarily accurate indicators of the extent of pesticide use or, conversely, the extent of use of reduced-risk pest management methods. For example, farmers may make a number of small-scale "spot" applications targeted at problem areas rather than one treatment of a large area. They may replace a more toxic pesticide used at

one pound per acre with a less hazardous compound that must be applied at several pounds per acre. Either of these scenarios could increase the number of applications or amount of pounds used, respectively, without indicating an increased reliance on pesticides.

**Table 1.** Total pounds of pesticide active ingredients reported in each county and rank during 2005 and 2006.

| -               | 2005 Pesticide | Use  | 2006 Pesticide Use |      |  |  |  |
|-----------------|----------------|------|--------------------|------|--|--|--|
| County          | Pounds Applied | Rank | Pounds Applied     | Rank |  |  |  |
| Alameda         | 358,443        | 39   | 259,013            | 41   |  |  |  |
| Alpine          | 195            | 58   | 64                 | 58   |  |  |  |
| Amador          | 150,079        | 43   | 92,679             | 45   |  |  |  |
| Butte           | 3,146,974      | 18   | 3,445,277          | 13   |  |  |  |
| Calaveras       | 39,379         | 48   | 49,205             | 50   |  |  |  |
| Colusa          | 1,908,716      | 23   | 2,100,392          | 22   |  |  |  |
| Contra Costa    | 883,597        | 31   | 2,218,546          | 21   |  |  |  |
| Del Norte       | 363,736        | 38   | 307,890            | 40   |  |  |  |
| El Dorado       | 130,004        | 45   | 113,738            | 43   |  |  |  |
| Fresno          | 32,104,029     | 1    | 31,839,898         | 1    |  |  |  |
| Glenn           | 2,212,665      | 22   | 2,476,359          | 20   |  |  |  |
| Humboldt        | 57,682         | 47   | 70,769             | 47   |  |  |  |
| Imperial        | 6,063,076      | 10   | 4,820,543          | 11   |  |  |  |
| Inyo            | 6,211          | 54   | 16,839             | 52   |  |  |  |
| Kern            | 28,184,187     | 2    | 30,104,107         | 2    |  |  |  |
| Kings           | 6,316,230      | 9    | 6,190,881          | 9    |  |  |  |
| Lake            | 757,574        | 35   | 525,120            | 36   |  |  |  |
| Lassen          | 143,329        | 44   | 96,273             | 44   |  |  |  |
| Los Angeles     | 3,259,438      | 16   | 2,641,098          | 17   |  |  |  |
| Madera          | 11,236,974     | 5    | 9,737,491          | 5    |  |  |  |
| Marin           | 58,474         | 46   | 58,341             | 49   |  |  |  |
| Mariposa        | 5,971          | 55   | 7,445              | 54   |  |  |  |
| Mendocino       | 1,213,175      | 28   | 1,094,588          | 30   |  |  |  |
| Merced          | 7,114,980      | 7    | 7,329,441          | 7    |  |  |  |
| Modoc           | 440,263        | 37   | 199,366            | 42   |  |  |  |
| Mono            | 2,414          | 56   | 4,354              | 57   |  |  |  |
| Monterey        | 8,674,310      | 6    | 8,209,012          | 6    |  |  |  |
| Napa            | 2,338,209      | 21   | 1,505,776          | 26   |  |  |  |
| Nevada          | 35,843         | 49   | 59,993             | 48   |  |  |  |
| Orange          | 1,499,748      | 26   | 1,264,641          | 29   |  |  |  |
| Placer          | 318,173        | 40   | 327,779            | 39   |  |  |  |
| Plumas          | 7,352          | 53   | 7,047              | 55   |  |  |  |
| Riverside       | 3,202,340      | 17   | 2,602,434          | 18   |  |  |  |
| Sacramento      | 3,948,361      | 13   | 3,294,073          | 14   |  |  |  |
| San Benito      | 764,545        | 34   | 751,580            | 34   |  |  |  |
| San Bernardino  | 520,552        | 36   | 576,005            | 35   |  |  |  |
| San Diego       | 1,670,746      | 25   | 2,013,072          | 24   |  |  |  |
| San Francisco   | 23,510         | 51   | 88,393             | 46   |  |  |  |
| San Joaquin     | 11,913,039     | 4    | 11,295,680         | 4    |  |  |  |
| San Luis Obispo | 2,509,106      | 20   | 2,086,420          | 23   |  |  |  |
| San Mateo       | 275,592        | 41   | 365,491            | 38   |  |  |  |

**Table 1** (continued) Total pounds of pesticide active ingredients reported in each county and rank during 2005 and 2006.

|               | 2005 Pesticide | Use  | 2006 Pesticide | Use  |
|---------------|----------------|------|----------------|------|
| County        | Pounds Applied | Rank | Pounds Applied | Rank |
| Santa Barbara | 4,349,957      | 12   | 4,072,266      | 12   |
| Santa Clara   | 951,455        | 30   | 1,388,327      | 28   |
| Santa Cruz    | 1,684,259      | 24   | 1,722,369      | 25   |
| Shasta        | 217,793        | 42   | 371,317        | 37   |
| Sierra        | 2,360          | 57   | 6,661          | 56   |
| Siskiyou      | 841,236        | 33   | 949,326        | 31   |
| Solano        | 1,016,185      | 29   | 791,365        | 33   |
| Sonoma        | 3,368,231      | 14   | 2,531,626      | 19   |
| Stanislaus    | 6,020,445      | 11   | 5,590,622      | 10   |
| Sutter        | 3,309,522      | 15   | 3,156,692      | 15   |
| Tehama        | 865,830        | 32   | 823,095        | 32   |
| Trinity       | 11,972         | 52   | 10,621         | 53   |
| Tulare        | 17,535,850     | 3    | 16,985,444     | 3    |
| Tuolumne      | 30,034         | 50   | 28,397         | 51   |
| Ventura       | 6,869,950      | 8    | 6,862,378      | 8    |
| Yolo          | 2,829,026      | 19   | 2,648,416      | 16   |
| Yuba          | 1,499,734      | 27   | 1,390,902      | 27   |
| Total         | 195,263,057    |      | 189,576,938    |      |

**Table 2.** Pounds of pesticide active ingredients, 1996 – 2006, by general use categories.

|      | Production  | Postharvest       | Structural          | Landscape   |             | Total       |
|------|-------------|-------------------|---------------------|-------------|-------------|-------------|
| Year | Agriculture | <b>Fumigation</b> | <b>Pest Control</b> | Maintenance | All Others* | Pounds      |
| 1996 | 183,222,942 | 2,358,093         | 4,672,859           | 1,251,975   | 7,608,989   | 199,114,858 |
| 1997 | 192,577,086 | 1,720,696         | 5,185,923           | 1,225,365   | 6,972,132   | 207,681,203 |
| 1998 | 200,917,991 | 1,707,519         | 5,930,239           | 1,396,233   | 6,831,459   | 216,783,441 |
| 1999 | 186,545,985 | 2,021,893         | 5,673,318           | 1,398,398   | 7,863,022   | 203,502,616 |
| 2000 | 173,139,552 | 2,117,018         | 5,184,686           | 1,402,827   | 6,783,178   | 188,627,261 |
| 2001 | 139,240,354 | 1,438,309         | 4,921,897           | 1,282,288   | 6,264,659   | 153,147,508 |
| 2002 | 154,653,274 | 1,841,493         | 5,469,435           | 1,440,557   | 6,693,912   | 170,098,670 |
| 2003 | 160,050,159 | 1,823,261         | 5,175,354           | 1,961,065   | 7,413,865   | 176,423,703 |
| 2004 | 164,847,199 | 1,901,504         | 5,129,734           | 1,600,583   | 6,982,124   | 180,461,145 |
| 2005 | 177,049,046 | 2,329,136         | 5,624,324           | 1,761,405   | 8,499,147   | 195,263,057 |
| 2006 | 167,004,409 | 2,176,666         | 5,318,467           | 2,258,530   | 12,818,866  | 189,576,938 |

<sup>\*</sup> This category includes pesticide applications reported in the following general categories: pest control on rights-of-way; public health which includes mosquito abatement work; vertebrate pest control; fumigation of nonfood and nonfeed materials such as lumber, furniture, etc.; pesticide used in research; and regulatory pest control used in ongoing control and/eradication of pest infestations.

#### IV. TRENDS IN USE IN CERTAIN PESTICIDE CATEGORIES

Reported pesticide use in California in 2006 totaled 190 million pounds, a decrease of nearly 6 million pounds from 2005. Production agriculture, the major category of use subject to reporting requirements, accounted for most of the overall decrease in use. Applications for production agriculture decreased by 10 million pounds. However, there was an increase of 0.5 million pounds in landscape maintenance, 2.2 million pound increase in public health (mostly mosquito control), and 2.1 million pound increase in fumigation of nonfood and nonfeed materials such as lumber, furniture, etc.

The active ingredients (AI) with the largest uses by pounds in 2006 were sulfur, petroleum and mineral oils, metam-sodium, copper compounds, and 1,3-dichloropropene (1,3-D). Most of the decline in pesticide use was from sulfur, which decreased by 15 million pounds (-25 percent). However, sulfur was still the most highly used non-adjuvant pesticide in 2006, both in pounds applied and acres treated. By pounds, sulfur accounted for 24 percent of all reported pesticide use. Sulfur is a natural fungicide favored by both conventional and organic farmers. Other pesticides that declined in use include metam-sodium (1.6 million pound decrease, -13 percent), copper (310,000 pound decrease, -3 percent), and 1,3-D (763,000 pound decrease, -8 percent).

In contrast, some pesticide use increased. Non-adjuvant pesticides with the greatest increase in pounds applied were oil (6.4 million pound increase, 22 percent) and metampotassium (1.2 million pound increase, 61 percent).

Major crops or sites that showed an overall increase in pesticide pounds applied from 2005 to 2006 included almonds (4.1 million pounds increase), public health (2.2 million pounds), unspecified fumigations (2.1 million pounds), pistachio (1.8 million pounds), and processing tomatoes (960,000 pounds). Major crops or sites with decreased pounds applied included wine grapes (8.5 million pounds decrease), raisin and table grapes (5.5 million pounds), cotton (1.5 million pounds), carrots (1.3 million pounds), and sugarbeets (630,000 pounds).

DPR data analyses have shown that pesticide use varies from year to year depending upon pest problems, weather, acreage and types of crops planted, economics, and other factors. Of the different AI types, insecticides had the greatest increase by pounds. But the vast majority of this increase was from use of oils. By acres treated, insecticide use increased only slightly. Herbicide use had the next largest increase by pounds and the largest increase by acres treated. Fungicide use (other than sulfur) decreased slightly by pounds but increased by acres treated. Similarly, pounds of fumigants decreased but acres treated with fumigants increased.

Pesticide use is reported as the number of pounds of AI and the total number of acres treated. The data for pounds include both agricultural and nonagricultural applications; the data for acres treated are primarily agricultural applications. The number of acres treated means the cumulative number of acres treated; the acres treated in each application are summed even when the same field is sprayed more than once in a year.

(For example, if one acre is treated three times in a season with an individual AI, it is counted as three acres treated in the tables and graphs in Sections IV and V of this report.)

To provide an overview, pesticide use is summarized for eight different pesticide categories from 1996 to 2006 (Tables 3–10) and from 1994 to 2006 (Figures 1–8). These categories classify pesticides according to certain characteristics such as reproductive toxins, carcinogens, or reduced-risk characteristics. Use of most pesticide categories decreased from 2005 to 2006, except for increases in pounds of groundwater contaminants and acres treated with fumigants. Some of the major changes from 2005 to 2006 include:

- Chemicals classified as reproductive toxins decreased in pounds applied from 2005 to 2006 (down 2.0 million pounds or -9.3 percent) and decreased in acres treated (down 350,000 acres or -17 percent). The decrease in pounds was mostly from decreases in the fumigant metam-sodium and the decrease in acres was mostly from decreases in the miticide propargite. By acres treated, use of metam-sodium actually increased. The pesticides in this category are ones listed on the State's Proposition 65 list of chemicals "known to cause reproductive toxicity".
- Use of chemicals classified as carcinogens decreased from 2005 to 2006 (down 1.8 million pounds or -6.5 percent and down 288,000 acres or -7.2 percent). The decrease in pounds was mainly due to a decrease in use of the fumigants metamsodium and 1,3-dichloropropene and the miticide propargite. The decrease in acres treated was mostly from decrease in propargite. The pesticides in this category are ones listed by U.S. EPA as B2 carcinogens or on the State's Proposition 65 list of chemicals "known to cause cancer".
- Use of insecticide organophosphate and carbamate chemicals, which include compounds of high regulatory concern, continued to decline as they have for nearly every year since 1995. Pounds decreased by 635,000 (-8.5 percent) and acres treated decreased by 668,000 (-10 percent). The AIs with the greatest decreases in pounds were thiobencarb, chlorpyrifos, and EPTC; the AIs with the greatest decreases in acres treated were chlorpyrifos, methomyl, and dimethoate. Use of most OPs and carbamates decreased; however, use of bensulide and phosmet increased.
- Pounds of all chemicals categorized as ground water contaminants increased by 124,000 pounds (7.1 percent), but acres treated remained about the same. Pounds of each groundwater contaminant AI increased. However, acres treated with atrazine, bentazon, bromacil, and diuron decreased while acres treated with simazine, norflurazon, and prometon increased.
- Chemicals categorized as toxic air contaminants, another group of pesticides of regulatory concern, decreased from 2005 to 2006. Use decreased by 1.0 million pounds (-2.5 percent) and by 106,000 acres treated (-2.8 percent). By pounds most

toxic air contaminants are fumigants, which are used at high rates, and use of most fumigants, except potassium n-methyldithiocarbamate (metam potassium), decreased. By acres treated, the main decreasing AIs were the fungicide maneb, the herbicide 2,4-D, and the defoliant S,S,S-tributyl phosphorotrithioate.

- Fumigant chemicals decreased in pounds applied from 2005 to 2006 (down 1.7 million pounds or -4.3 percent) but increased in cumulative acres treated (up 28,000 acres or 8.4 percent). Pounds of 4 of the 8 major fumigants decreased (metam-sodium, 1,3-D, sulfuryl fluoride, and sodium tetrathiocarbonate) and pounds of 4 fumigants increased (methyl bromide, chloropicrin, metampotassium, and aluminum phosphide). By acres treated, use of all major fumigants increased except for 1,3-D and sodium tetrathiocarbonate.
- Use of oil pesticides increased by 6.4 million pounds (22 percent) and 472,000 acres (17 percent). Oils include many different chemicals, but the category used here includes only ones derived from petroleum distillation. Some of these oils may be on the State's Proposition 65 list of chemicals "known to cause cancer" but most serve as alternatives to high-toxicity pesticides. Oils are also used by organic growers.
- Biopesticide use decreased by 178,000 pounds (-17 percent) and by 145,000 acres treated (-5.8 percent) from 2005 to 2006. The largest decrease, both in pounds and acres treated, was in use of potassium bicarbonate. If that AI were excluded, pounds of biopesticides would have increased. Other biopesticides with decreasing pounds were liquefied nitrogen and neem oil. AIs with the greatest increase in pounds were soybean oil and *Bacillus thuringiensis*. By acres treated, the AI with second greatest decrease was *Bacillus thuringiensis* then gamma aminobutyric acid/glutamic acid. Biopesticides include microorganisms and naturally occurring compounds, or compounds essentially identical to naturally occurring compounds that are not toxic to the target pest (such as pheromones).

Since 1993, the reported pounds of pesticides applied have fluctuated from year to year. An increase or decrease in use from one year to the next or in the span of a few years does not necessarily indicate a general trend in use; it simply may reflect normal variations. Short periods of time (three to five years) may suggest trends, such as the increased pesticide use from 2001 to 2005 or the decreased use from 1998 to 2001. However, regression analyses on use from 1993 to 2006 do not indicate a significant trend of either increase or decrease in pesticide use.

To improve data quality when calculating the total pounds of pesticides, DPR excluded values that were so large they were probably in error. The procedure to exclude probable errors involved the development of complex error-checking algorithms, a data improvement process that is ongoing.

Over-reporting errors have a much greater impact on the numerical accuracy of the database than under-reporting errors. For example, if a field is treated with 100 pounds of

a pesticide AI and the application is erroneously recorded as 100,000 pounds (a decimal point shift of three places to the right), an error of 99,900 pounds is introduced into the database. If the same degree of error is made in shifting the decimal point to the left, the application is recorded as 0.1 pound, and an error of 99.9 pounds is entered into the database

The summaries detailed in the following use categories are not intended to serve as indicators of pesticide risks to the public or the environment. Rather, the data supports DPR regulatory functions to enhance public safety and environmental protection. (See "How Pesticide Data are Used" on page 2.)

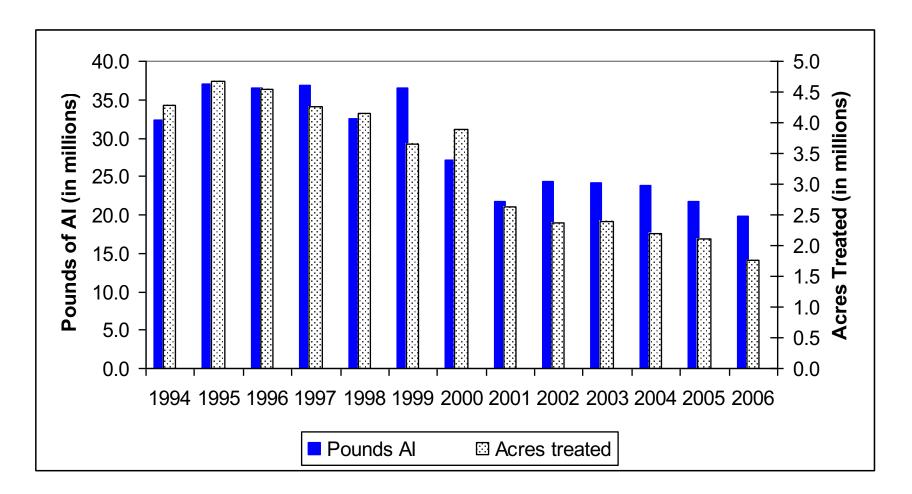
# USE TRENDS OF PESTICIDES ON THE STATE'S PROPOSITION 65 LIST OF CHEMICALS THAT ARE "KNOWN TO CAUSE REPRODUCTIVE TOXICITY"

**Table 3A.** The reported pounds of pesticides used which are on the State's Proposition 65 list of chemicals that are "known to cause reproductive toxicity." Use includes both agricultural and reportable non-agricultural applications. Data are from the Department of Pesticide Regulation's Pesticide Use Reports.

| Al                     | 1996       | 1997       | 1998       | 1999       | 2000       | 2001       | 2002       | 2003       | 2004       | 2005       | 2006       |
|------------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| 1080                   | 1          | <1         | <1         | <1         | <1         | <1         | <1         | <1         | <1         | <1         | <1         |
| 2,4-DB ACID            | 0          | 1,697      | 6,932      | 12,397     | 11,453     | 16,954     | 9,393      | 6,408      | 4,789      | 7,655      | 3,132      |
| AMITRAZ                | 55,459     | 66,439     | 13,563     | 7,558      | 8,087      | 263        | 154        | 115        | 0          | 0          | 12         |
| ARSENIC PENTOXIDE      | 205,089    | 64,372     | 50,899     | 245,238    | 91,267     | 259,400    | 194,650    | 129,889    | 12,705     | 180,505    | 474,517    |
| ARSENIC TRIOXIDE       | <1         | <1         | 1          | 1          | <1         | <1         | <1         | <1         | <1         | <1         | <1         |
| BENOMYL                | 148,517    | 114,406    | 227,715    | 133,109    | 118,425    | 76,713     | 29,005     | 7,105      | 2,210      | 948        | 898        |
| BROMACIL, LITHIUM SALT | 17,381     | 9,141      | 4,686      | 4,162      | 4,478      | 3,217      | 4,016      | 3,025      | 1,801      | 1,059      | 2,529      |
| BROMOXYNIL             |            |            |            |            |            |            |            |            |            |            |            |
| OCTANOATE              | 148,480    | 115,368    | 120,877    | 120,338    |            | 78,454     | 72,900     | 75,345     | 50,223     | 34,463     | 37,250     |
| CHLORSULFURON          | 1,623      | 2,218      | 3,102      | 1,541      | 2,705      | 1,312      | 2,190      | 8,684      | 9,967      | 3,242      | 3,467      |
| CYANAZINE              | 566,632    | 471,904    | 277,313    | 180,487    | 49,864     | 17,131     | 7,178      | 37         | 8          | 7          | 0          |
| CYCLOATE               | 44,628     | 55,458     | 62,753     | 49,096     | 37,416     | 31,785     | 34,387     | 30,012     | 43,209     | 39,709     | 41,298     |
| DICLOFOP-METHYL        | 79,874     | 41,130     | 24,783     | 18,710     | 21,696     | 11,765     | 5,058      | 9,309      | 5,988      | 1,413      | 174        |
| EPTC                   | 703,996    | 579,245    | 393,031    | 448,883    | 323,624    | 276,724    | 253,634    | 141,552    | 182,532    | 181,790    | 106,125    |
| ETHYLENE GLYCOL        |            |            |            |            |            |            |            |            |            |            |            |
| MONOMETHYL ETHER       | 10,292     | 8,357      | 4,371      | 1,993      | 2,024      | 2,248      | 3,009      | 1,782      | 2,729      | 2,476      | 4,186      |
| ETHYLENE OXIDE         | 0          | 0          | 31         | 2          | 6          | 3          | 0          | 0          | 0          | 0          | 0          |
| FENOXAPROP-ETHYL       | 3,974      | 3,895      | 1,504      | 2,048      | 979        | 366        | 106        | 53         | 64         | 161        | 196        |
| FLUAZIFOP-BUTYL        | 823        | 2,028      | 1,211      | 516        | 205        | 149        | 166        | 31         | 34         | 41         | 26         |
| HYDRAMETHYLNON         | 1,741      | 5,456      | 3,183      | 2,267      | 2,501      | 2,381      | 2,741      | 2,029      | 1,896      | 1,380      | 1,227      |
| LINURON                | 84,335     | 84,621     | 82,170     | 78,046     | 65,526     | 58,173     | 62,006     | 60,117     | 69,289     | 72,011     | 58,608     |
| METAM-SODIUM           | 15,501,650 | 15,401,098 | 14,120,788 | 17,273,325 | 13,143,954 | 12,460,997 | 15,116,768 | 14,822,689 | 14,698,228 | 12,991,279 | 11,362,375 |
| METHYL BROMIDE         | 16,124,148 | 16,711,308 | 14,314,983 | 15,355,845 | 10,900,339 | 6,625,336  | 7,008,644  | 7,289,389  | 7,105,612  | 6,504,576  | 6,518,683  |
| METIRAM                | 0          | 0          | <1         | 0          | 0          | 2          | 0          | 1          | 5          | 0          | <1         |
| MYCLOBUTANIL           | 89,087     | 94,376     | 129,775    | 94,626     | 95,454     | 83,668     | 76,635     | 83,426     | 70,908     | 80,143     | 111,145    |
| NABAM                  | 0          | 0          | 50         | 2          | 1          | 8          | 0          | 0          | 10,693     | 30,440     | 22,306     |
| NICOTINE               | 312        | 258        | 83         | 93         | 21         | 17         | 2          | 2          | 4          | 2          | <1         |
| NITRAPYRIN             | 114        | 49         | 410        | 150        | 192        | 16         | 89         | 117        | 12         | 171        | 0          |
| OXADIAZON              | 25,281     | 23,197     | 22,389     | 19,253     | 18,276     | 15,905     | 16,692     | 12,566     | 12,979     | 13,762     | 11,691     |
| OXYDEMETON-METHYL      | 107,410    | 117,159    | 90,790     | 122,912    | 110,754    | 99,756     | 96,363     | 93,774     | 102,563    | 121,910    | 119,713    |
| OXYTHIOQUINOX          | 6,204      | 2,709      | 1,576      | 2,705      | 411        | 145        | 117        | 34         | 27         | 8          | 90         |

**Table 3A** (cont.). The reported pounds of pesticides used which are on the State's Proposition 65 list of chemicals that are "known to cause reproductive toxicity."

| Al                                  | 1996       | 1997       | 1998       | 1999       | 2000       | 2001       | 2002       | 2003       | 2004       | 2005       | 2006       |
|-------------------------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| POTASSIUM DIMETHYL                  |            |            |            |            |            |            |            |            |            |            |            |
| DITHIO CARBAMATE                    | 0          | 15         | 24,795     | 0          | 0          | 0          | 23         | 28         | 293        | 0          | 0          |
| PROPARGITE                          | 1,787,942  | 1,853,332  | 1,390,366  | 1,502,732  | 1,331,979  | 1,159,792  | 972,382    | 1,054,691  | 1,010,874  | 995,038    | 569,971    |
| RESMETHRIN                          | 663        | 687        | 796        | 695        | 676        | 542        | 661        | 1,561      | 245        | 958        | 656        |
| SODIUM DIMETHYL DITHIO<br>CARBAMATE | 0          | 0          | 8,279      | 355        | 1,315      | 173        | 0          | 0          | 10,693     | 30,440     | 22,306     |
| SODIUM<br>TETRATHIOCARBONATE        | 543,229    | 799,092    | 900,991    | 688,701    | 596,028    | 375,487    | 352,342    | 212,308    | 259,542    | 330,886    | 171,194    |
| STREPTOMYCIN SULFATE                | 9,494      | 9,626      | 14,950     | 9,405      | 10,455     | 7,554      | 5,989      | 8,463      | 4,702      | 7,790      | 7,582      |
| TAU-FLUVALINATE                     | 4,139      | 3,065      | 2,839      | 3,315      | 2,209      | 2,207      | 2,117      | 1,632      | 1,581      | 1,162      | 1,080      |
| THIOPHANATE-METHYL                  | 122,985    | 88,771     | 65,158     | 75,938     | 68,075     | 66,985     | 71,486     | 125,388    | 119,063    | 158,594    | 112,582    |
| TRIADIMEFON                         | 17,370     | 12,204     | 13,029     | 4,844      | 3,130      | 2,764      | 1,736      | 1,773      | 2,111      | 1,918      | 1,114      |
| TRIBUTYLTIN<br>METHACRYLATE         | 185        | 60         | 113        | 270        | 107        | 106        | 39         | 0          | 0          | 0          | 0          |
| TRIFORINE                           | 24,896     | 6,604      | 2,759      | 519        | 365        | 99         | 72         | 88         | 295        | 137        | 452        |
| VINCLOZOLIN                         | 60,312     | 46,929     | 54,719     | 52,731     | 35,728     | 32,208     | 22,170     | 18,581     | 14,863     | 3,574      | 402        |
| WARFARIN                            | 1          | 1          | 1          | 1          | 1          | 1          | 1          | 3          | 3          | 1          | 9          |
| Grand Total                         | 36,498,267 | 36,796,276 | 32,437,763 | 36,514,809 | 27,175,390 | 21,770,803 | 24,424,918 | 24,202,003 | 23,812,739 | 21,799,650 | 19,766,996 |


**Table 3B.** The reported cumulative acres treated with pesticides that are on the State's Proposition 65 list of chemicals "known to cause reproductive toxicity." Use includes primarily agricultural applications. The grand total for acres treated may be less than the sum of acres treated for all active ingredients because some products contain more than one active ingredient. Data are from the Department of Pesticide Regulation's Pesticide Use Reports.

| AI                        | 1996    | 1997    | 1998      | 1999    | 2000    | 2001    | 2002    | 2003    | 2004    | 2005    | 2006    |
|---------------------------|---------|---------|-----------|---------|---------|---------|---------|---------|---------|---------|---------|
| 1080                      | 25      | 0       | 0         | 0       | 42      | 30      | 301     | 50      | 0       | 41      | 22      |
| 2,4-DB ACID               | 0       | 2,599   | 12,167    | 20,063  | 19,496  | 25,843  | 15,584  | 10,384  | 8,873   | 11,777  | 5,073   |
| AMITRAZ                   | 129,857 | 161,651 | 28,945    | 14,684  | 16,011  | 1,269   | 605     | 379     | 0       | 0       | 0       |
| ARSENIC PENTOXIDE         | 0       | 0       | 0         | 0       | 709,893 | 56      | 0       | 0       | 48      | 0       | 0       |
| ARSENIC TRIOXIDE          | 0       | 0       | 0         | 0       | 0       | 0       | 1       | <1      | 0       | 1       | 0       |
| BENOMYL                   | 310,563 | 245,687 | 434,729   | 242,796 | 217,613 | 135,929 | 47,879  | 13,340  | 3,983   | 2,789   | 1,674   |
| BROMACIL, LITHIUM<br>SALT | 0       | 0       | 40        | 40      | 20      | 0       | 0       | 0       | 0       | 0       | 0       |
|                           | U       | 0       | 40        | 40      | 30      | 0       | U       | U       | U       | U       | U       |
| BROMOXYNIL<br>OCTANOATE   | 277,062 | 224,250 | 240,997   | 257,417 | 313,362 | 251,527 | 239,110 | 218,281 | 162,572 | 120,175 | 133,824 |
| CHLORSULFURON             | 54,360  | 27,628  | 39,873    | 30,691  | 34,538  | 29,079  | 18,836  | 26,280  | 25,745  | 21,903  | 26,345  |
| CYANAZINE                 | 325,627 | 288,087 | 185,082   | 129,547 | 56,059  | 19,708  | 8,763   | 25      | 5       | 8       | 0       |
| CYCLOATE                  | 19,597  | 25,986  | 29,761    | 24,555  | 18,495  | 15,918  | 17,228  | 16,713  | 20,699  | 19,319  | 19,789  |
| DICLOFOP-METHYL           | 89,276  | 47,217  | 28,296    | 21,442  | 24,470  | 14,198  | 6,259   | 11,257  | 7,391   | 729     | 186     |
| EPTC                      | 232,820 | 208,093 | 141,511   | 148,685 | 107,758 | 99,953  | 94,240  | 56,639  | 64,194  | 64,230  | 38,073  |
| ETHYLENE GLYCOL           |         |         |           |         |         |         |         |         |         |         |         |
| MONOMETHYL ETHER          | 130,064 | 96,353  | 55,099    | 26,451  | 28,880  | 33,256  | 36,299  | 24,249  | 25,075  | 16,655  | 25,655  |
| ETHYLENE OXIDE            | 0       | 0       | 194       | 31      | 41      | 0       | 0       | 0       | 0       | 0       | 0       |
| FENOXAPROP-ETHYL          | 25,540  | 24,439  | 10,480    | 13,824  | 8,847   | 3,820   | 1,327   | 839     | 1,681   | 3,247   | 3,418   |
| FLUAZIFOP-BUTYL           | 1,513   | 1,537   | 3,908     | 806     | 137     | 144     | 98      | 0       | <1      | 3       | 0       |
| HYDRAMETHYLNON            | 36      | 35      | 289       | 1,615   | 3,658   | 2,762   | 2,148   | 2,057   | 1,314   | 1,990   | 649     |
| LINURON                   | 104,772 | 110,067 | 112,122   | 111,009 | 86,376  | 81,801  | 86,942  | 85,412  | 95,565  | 101,920 | 80,836  |
| METAM-SODIUM              | 215,899 | 198,395 | 154,309   | 186,300 | 146,847 | 125,263 | 141,415 | 142,406 | 128,427 | 97,562  | 101,880 |
| METHYL BROMIDE            | 96,507  | 113,195 | 90,107    | 102,115 | 75,832  | 60,892  | 53,140  | 55,254  | 57,385  | 45,700  | 50,608  |
| METIRAM                   | 0       | 0       | <1        | 0       | 0       | 7       | 0       | <1      | 2       | 0       | 1       |
| MYCLOBUTANIL              | 814,268 | 866,360 | 1,225,372 | 887,981 | 843,208 | 737,643 | 704,827 | 742,139 | 656,020 | 699,773 | 643,306 |
| NABAM                     | 0       | 0       | 55        | 20      | 0       | 60      | 0       | 0       | 0       | 0       | 0       |
| NICOTINE                  | 167     | 128     | 57        | 36      | 14      | 31      | 1       | 0       | 2       | 3       | 0       |
| NITRAPYRIN                | 147     | 105     | 851       | 329     | 276     | 0       | 169     | 258     | 42      | 143     | 0       |
| OXADIAZON                 | 2,213   | 1,833   | 1,983     | 3,408   | 2,660   | 2,637   | 1,838   | 1,904   | 3,120   | 2,209   | 2,141   |
| OXYDEMETON-METHYL         | 220,824 | 244,056 | 186,964   | 253,281 | 225,990 | 200,171 | 193,453 | 189,015 | 206,751 | 173,480 | 164,094 |
| OXYTHIOQUINOX             | 8,768   | 5,896   | 5,306     | 2,152   | 817     | 250     | 182     | 71      | 137     | 14      | 10      |

**Table 3B** (cont.). The reported cumulative acres treated with pesticides that are on the State's Proposition 65 list of chemicals "known to cause reproductive toxicity."

| Al                                     | 1996      | 1997      | 1998      | 1999      | 2000      | 2001      | 2002      | 2003      | 2004      | 2005      | 2006      |
|----------------------------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| POTASSIUM DIMETHYL<br>DITHIO CARBAMATE | 0         | 0         | 0         | 0         | 0         | 0         | 2         | 6         | 0         | 0         | 0         |
| PROPARGITE                             | 980,963   | 989,265   | 756,098   | 795,410   | 704,529   | 606,737   | 524,439   | 558,056   | 543,728   | 519,412   | 286,592   |
| RESMETHRIN                             | 144       | 182       | 160       | 84,044    | 33        | 35        | 32        | 66        | 209       | 1         | 1         |
| SODIUM DIMETHYL<br>DITHIO CARBAMATE    | 0         | 0         | 253       | 20        | 0         | 60        | 0         | 0         | 0         | 0         | 0         |
| SODIUM<br>TETRATHIOCARBONATE           | 27,736    | 35,473    | 34,488    | 24,947    | 21,002    | 13,574    | 11,559    | 6,832     | 8,497     | 7,977     | 6,170     |
| STREPTOMYCIN<br>SULFATE                | 84,999    | 89,336    | 147,617   | 76,414    | 97,024    | 62,184    | 52,180    | 63,445    | 37,461    | 52,061    | 57,294    |
| TAU-FLUVALINATE                        | 22,156    | 18,387    | 14,075    | 17,343    | 10,105    | 10,893    | 9,046     | 7,939     | 7,313     | 5,879     | 5,434     |
| THIOPHANATE-METHYL                     | 128,267   | 89,556    | 64,098    | 81,428    | 68,984    | 53,990    | 64,340    | 121,339   | 112,501   | 135,296   | 108,358   |
| TRIADIMEFON                            | 100,142   | 59,229    | 79,968    | 25,719    | 12,130    | 9,501     | 6,747     | 7,625     | 6,752     | 8,585     | 2,945     |
| TRIBUTYLTIN<br>METHACRYLATE            | 1         | <1        | 1         | 1         | 1         | <1        | 0         | 0         | 0         | 0         | 0         |
| TRIFORINE                              | 53,589    | 17,455    | 6,352     | 1,279     | 751       | 244       | 203       | 196       | 61        | 181       | 102       |
| VINCLOZOLIN                            | 82,968    | 67,373    | 69,067    | 63,931    | 43,702    | 38,570    | 27,795    | 21,692    | 18,207    | 3,899     | 440       |
| WARFARIN                               | 541       | 382       | 310       | 129       | 556       | 101       | 449       | 632       | 1,504     | 430       | 473       |
| Grand Total                            | 4,541,413 | 4,260,237 | 4,160,984 | 3,649,944 | 3,900,166 | 2,638,136 | 2,367,437 | 2,384,780 | 2,205,264 | 2,117,391 | 1,765,395 |

**Figure 1.** Use trends of pesticides that are on the State's Proposition 65 list of chemicals that are "known to cause reproductive toxicity." Reported pounds of active ingredient (AI) applied include both agricultural and non-agricultural applications. The reported cumulative acres treated include primarily agricultural applications. Data are from the Department of Pesticide Regulation's Pesticide Use Reports.



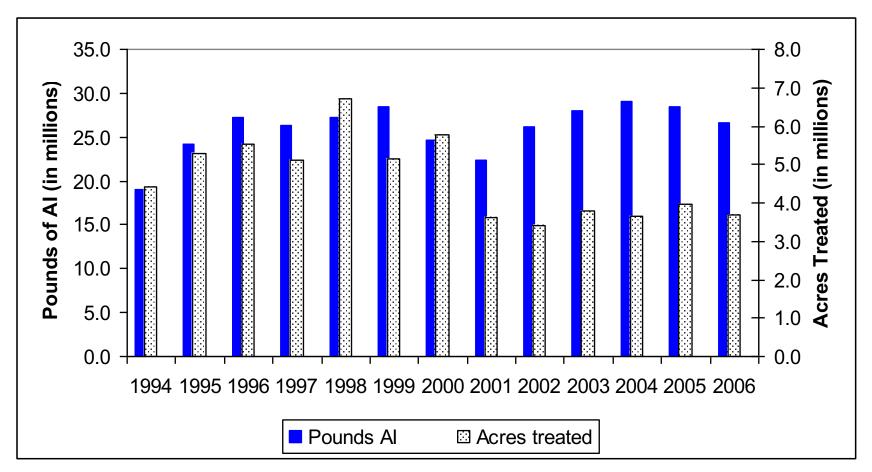
#### USE TRENDS OF PESTICIDES LISTED BY U.S. EPA AS CARCINOGENS OR BY THE STATE AS "KNOWN TO CAUSE CANCER"

**Table 4A.** The reported pounds of pesticides used that are listed by U.S. EPA as B2 carcinogens or that are on the State's Proposition 65 list of chemicals "known to cause cancer." Use includes both agricultural and reportable non-agricultural applications. Data are from the Department of Pesticide Regulation's Pesticide Use Reports.

| Al                  | 1996       | 1997       |            | 1999       | 2000       | 2001       | 2002       | 2003       | 2004       | 2005       | 2006       |
|---------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| 1,3-DICHLOROPROPENE | 1,956,846  | 2,457,690  | 3,011,057  | 3,321,147  | 4,465,422  | 4,141,173  | 5,413,214  | 7,003,782  | 8,945,145  | 9,355,308  | 8,591,883  |
| ACIFLUORFEN, SODIUM |            |            |            |            |            |            |            |            |            |            |            |
| SALT                | 11         | 29         | <1         | 10         | <1         | 1          | 3          | <1         | 18         | <1         | 0          |
| ALACHLOR            | 45,733     | 51,259     | 46,264     | 29,789     | 36,468     | 29,057     | 28,666     | 24,913     | 27,229     | 21,052     | 13,740     |
| ARSENIC ACID        | 53,777     | 59,835     | 52,558     | 48,029     | 11,906     | 12,023     | 4,976      |            | 223        | 68         | 3          |
| ARSENIC PENTOXIDE   | 205,089    | 64,372     | 50,899     | 245,238    | 91,267     | 259,400    | 194,650    | 129,889    | 12,705     | 180,505    | 474,517    |
| ARSENIC TRIOXIDE    | <1         | <1         | 1          | 1          | <1         | <1         | <1         | <1         | <1         | <1         | <1         |
| CACODYLIC ACID      | 31,417     | 26,060     | 17,381     | 15,930     | 16,091     | 3,981      | 1,792      | 207        | 115        | 131        | 20         |
| CAPTAN              | 919,016    | 801,899    | 1,542,556  | 966,020    | 643,826    | 399,146    | 395,575    | 498,445    | 370,418    | 468,413    | 508,883    |
| CHLOROTHALONIL      | 1,053,361  | 779,390    | 1,182,963  | 755,314    | 684,213    | 521,581    | 601,060    | 713,226    | 571,622    | 765,150    | 821,775    |
| CHROMIC ACID        | 286,521    | 89,931     | 71,109     | 343,543    | 128,642    | 363,225    | 272,300    | 182,022    | 17,753     | 252,176    | 662,927    |
| CREOSOTE            | 491,044    | 259,086    | 1,752      | 4,873      | 9,879      | 4,700      | 9,018      | 3,385      | 1,048      | <1         | 0          |
| DAMINOZIDE          | 7,944      | 11,028     | 10,406     | 9,411      | 9,079      | 11,309     | 10,077     | 10,111     | 9,586      | 8,793      | 7,777      |
| DDVP                | 13,097     | 13,636     | 13,998     | 12,325     | 12,680     | 12,833     | 8,477      | 3,446      | 3,807      | 4,914      | 6,527      |
| DIOCTYL PHTHALATE   | 1          | 1          | 318        | 1,076      | 595        | 640        | 604        | 521        | 397        | 583        | 1,016      |
| DIPROPYL            |            |            |            |            |            |            |            |            |            |            |            |
| ISOCINCHOMERONATE   | 3          | <1         | <1         | 0          | <1         | 1          | 0          | 1          | <1         | <1         | 52         |
| DIURON              | 1,266,315  | 1,228,277  | 1,504,731  | 1,188,553  | 1,351,232  | 1,105,536  | 1,302,603  | 1,344,596  | 1,398,123  | 955,983    | 1,045,525  |
| ETHOPROP            | 27,955     | 23,842     | 27,949     | 26,196     | 16,119     | 19,046     | 16,531     | 28,419     | 23,130     | 18,924     | 24,485     |
| ETHYLENE OXIDE      | 0          | 0          | 31         | 2          | 6          | 3          | 0          | 0          | 0          | 0          | 0          |
| FENOXYCARB          | 712        | 65         | 552        | 71         | 89         | 86         | 53         | 32         | 34         | 30         | 8          |
| FOLPET              | <1         | <1         | <1         | <1         | <1         | 0          | 2          | <1         | 0          | <1         | <1         |
| FORMALDEHYDE        | 334,548    | 416,823    | 349,785    |            | 55,300     | 28,612     | 14,035     |            | 111,151    | 48,968     | 73,392     |
| IPRODIONE           | 521,223    | 424,555    | 572,389    | 411,488    | 421,582    | 304,716    | 247,090    | 287,850    | 261,218    | 284,984    | 301,231    |
| LINDANE             | 4,668      | 5,511      | 6,330      | 4,842      | 4,746      |            |            | 908        | 775        | 40         | 378        |
| MANCOZEB            | 567,866    | 528,159    | 988,344    | 630,987    | 610,903    | 428,738    | 396,912    | 535,600    | 379,539    | 642,444    | 660,471    |
| MANEB               | 1,328,368  | 1,082,071  | 1,596,466  |            | 1,202,545  | 816,548    | 851,819    |            | 954,085    | 1,122,684  | 1,175,427  |
| METAM-SODIUM        | 15,501,650 | 15,401,098 | 14,120,788 | 17,273,325 | 13,143,954 | 12,460,997 | 15,116,768 | 14,822,689 | 14,698,228 | 12,991,279 | 11,362,375 |
| METIRAM             | 0          | 0          | <1         | 0          | 0          | 2          | 0          | 1          | 5          | 0          | <1         |
| ORTHO-PHENYLPHENOL  | 10,349     | 15,962     | 11,248     | 8,600      | 8,516      | 4,016      | 15,129     | 4,936      | 21,740     | 9,454      | 2,073      |
| ORTHO-PHENYLPHENOL, |            |            |            |            |            |            |            |            |            |            |            |
| SODIUM SALT         | 37,508     | 26,192     | 32,972     | 29,019     | 31,681     | 27,071     | 25,029     | 20,536     | 5,898      | 4,979      | 6,826      |

**Table 4A** (cont.). The reported pounds of pesticides used that are listed by U.S. EPA as B2 carcinogens or that are on the State's Proposition 65 list of chemicals "known to cause cancer."

| Al                   | 1996       | 1997       | 1998       | 1999       | 2000       | 2001       | 2002       | 2003       | 2004       | 2005       | 2006       |
|----------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| OXADIAZON            | 25,281     |            |            | 19,253     |            |            |            | 12,566     |            | 13,762     |            |
| OXYTHIOQUINOX        | 6,204      | 2,709      | 1,576      | 2,705      |            | 145        | 117        | 34         | 27         | 8          | 90         |
| PARA-DICHLOROBENZENE | 4          | 3          | 219        | 86         | 4          | 11         | 1          | 25         | 10         | 139        | 0          |
| PENTACHLOROPHENOL    | 3          | 8          | 33         | 92         | 466        | 14         | 17         | 3          | 2          | 3          | 27         |
| POTASSIUM DICHROMATE | 41         | 50         | 103        | 319        | 554        | 1          | <1         | 11         | 71         | 40         | 0          |
| PROPARGITE           | 1,787,942  | 1,853,332  | 1,390,366  | 1,502,732  | 1,331,979  | 1,159,792  | 972,382    | 1,054,691  | 1,010,874  | 995,038    | 569,971    |
| PROPOXUR             | 1,341      | 1,760      | 1,604      | 1,735      | 2,145      | 611        | 450        | 306        | 223        | 220        | 210        |
| PROPYLENE OXIDE      | 224,495    | 198,559    | 198,595    | 172,556    | 118,381    | 99,727     | 99,674     | 99,396     | 151,484    | 147,324    | 130,016    |
| PROPYZAMIDE          | 108,929    | 101,267    | 106,368    | 104,484    | 103,702    | 108,987    | 107,663    | 104,222    | 118,952    | 116,132    | 120,804    |
| SODIUM DICHROMATE    | 180,478    | 182,185    | 122,647    | 32,699     | 122        | 329        | 633        | 217        | 0          | 0          | 0          |
| TERRAZOLE            | 37         | 38         | 21         | 8          | 2          | 25         | 6          | 575        | 1,099      | 750        | 946        |
| THIODICARB           | 122,927    | 156,092    | 114,785    | 60,453     | 36,704     | 9,042      | 5,195      | 8,392      | 2,249      | 1,872      | 894        |
| VINCLOZOLIN          | 60,312     | 46,929     | 54,719     | 52,731     | 35,728     | 32,208     | 22,170     | 18,581     | 14,863     | 3,574      | 402        |
| Grand Total          | 27,183,017 | 26,332,901 | 27,226,274 | 28,432,921 | 24,605,217 | 22,383,625 | 26,153,010 | 27,960,348 | 29,126,826 | 28,415,727 | 26,576,364 |


**Table 4B.** The reported cumulative acres treated with pesticides listed by U.S. EPA as B2 carcinogens or on the State's Proposition 65 list of chemicals "known to cause cancer." Use includes primarily agricultural applications. The grand total for acres treated is less than the sum of acres treated for all active ingredients because some products contain more than one active ingredient. Data are from the Department of Pesticide Regulation's Pesticide Use.

| Al                  | 1996    | 1997    | 1998      | 1999    | 2000      | 2001    | 2002    | 2003    | 2004    | 2005    | 2006    |
|---------------------|---------|---------|-----------|---------|-----------|---------|---------|---------|---------|---------|---------|
| 1,3-                |         |         |           |         |           |         |         |         |         |         |         |
| DICHLOROPROPENE     | 17,223  | 22,193  | 27,059    | 29,430  | 33,244    | 30,817  | 42,172  | 48,944  | 56,618  | 51,486  | 48,870  |
| ACIFLUORFEN, SODIUM |         |         |           |         |           |         |         |         |         |         |         |
| SALT                | <1      | 0       | 0         | 0       | 0         | 0       | 11      | 0       | 3       | 0       | 0       |
| ALACHLOR            | 18,181  | 19,059  | 16,430    | 11,008  | 13,302    | 11,453  | 14,467  | 10,004  | 9,888   | 7,935   | 5,192   |
| ARSENIC ACID        | 0       | 0       | 0         | 0       | 0         | 0       | 0       | 0       | 0       | 0       | 0       |
| ARSENIC PENTOXIDE   | 0       | 0       | 0         | 0       | 709,893   | 56      | 0       | 0       | 48      | 0       | 0       |
| ARSENIC TRIOXIDE    | 0       | 0       | 0         | 0       | 0         | 0       | 1       | <1      | 0       | 1       | 0       |
| CACODYLIC ACID      | 251,414 | 192,816 | 126,923   | 111,607 | 117,656   | 31,283  | 12,648  | 757     | 100     | 82      | 121     |
| CAPTAN              | 381,989 | 347,631 | 602,684   | 404,731 | 309,989   | 215,969 | 215,412 | 271,140 | 211,028 | 252,040 | 262,912 |
| CHLOROTHALONIL      | 674,086 | 492,219 | 796,672   | 456,007 | 430,128   | 312,726 | 347,736 | 361,203 | 331,710 | 418,600 | 436,703 |
| CHROMIC ACID        | 0       | 0       | 0         | 0       | 709,893   | 56      | 0       | 0       | 0       | 0       | 0       |
| CREOSOTE            | 0       | 0       | 126       | 11      | 45        | 1       | 0       | 0       | 0       | 0       | 0       |
| DAMINOZIDE          | 2,653   | 3,512   | 4,510     | 3,107   | 3,416     | 6,146   | 5,417   | 3,103   | 2,667   | 2,376   | 2,211   |
| DDVP                | 1,499   | 2,596   | 3,692     | 2,180   | 2,336     | 3,954   | 4,327   | 2,576   | 1,637   | 7,445   | 1,526   |
| DIOCTYL PHTHALATE   | 55      | 14      | 6,250     | 24,270  | 11,195    | 10,776  | 6,649   | 3,880   | 6,249   | 13,858  | 13,231  |
| DIPROPYL            |         |         |           |         |           |         |         |         |         |         |         |
| ISOCINCHOMERONATE   | 0       | 0       | 0         | 0       | 5         | 0       | 0       | 0       | 0       | 1       | 18      |
| DIURON              | 685,352 | 819,993 | 865,246   | 849,482 | 865,974   | 788,559 | 796,904 | 843,897 | 971,628 | 894,073 | 879,497 |
| ETHOPROP            | 3,139   | 3,213   | 3,784     | 3,610   | 3,477     | 3,542   | 4,152   | 6,078   | 4,917   | 4,296   | 4,815   |
| ETHYLENE OXIDE      | 0       | 0       | 194       | 31      | 41        | 0       | 0       | 0       | 0       | 0       | 0       |
| FENOXYCARB          | 5       | <1      | 210       | 3,707   | 3,405     | 3,241   | 1,242   | 812     | 1,011   | 1,398   | 828     |
| FOLPET              | 1       | 2       | 0         | 0       | 0         | 0       | 0       | 0       | 0       | 0       | 0       |
| FORMALDEHYDE        | 234     | 12      | 126       | 123     | 47        | 53      | 33      | 18      | 23      | 2       | 265     |
| IPRODIONE           | 804,311 | 666,336 | 1,348,382 | 933,982 | 1,194,578 | 501,033 | 364,809 | 445,511 | 409,250 | 450,354 | 467,045 |
| LINDANE             | 25,352  | 36,573  | 32,650    | 20,930  | 14,640    | 13,832  | 8,010   | 8,828   | 9,437   | 557     | 9       |
| MANCOZEB            | 351,801 | 284,136 | 683,756   | 387,300 | 363,305   | 228,275 | 197,196 | 276,093 | 194,219 | 370,266 | 348,061 |
| MANEB               | 731,079 | 624,121 | 941,308   | 629,897 | 611,756   | 535,105 | 554,904 | 660,011 | 601,360 | 730,254 | 675,530 |
| METAM-SODIUM        | 215,899 | 198,395 | 154,309   | 186,300 | 146,847   | 125,263 | 141,415 | 142,406 | 128,427 | 97,562  | 101,880 |
| METIRAM             | 0       | 0       | <1        | 0       | 0         | 7       | 0       | <1      | 2       | 0       | 1       |

**Table 4B** (cont.). The reported cumulative acres treated with pesticides listed by U.S. EPA as B2 carcinogens or on the State's Proposition 65 list of chemicals "known to cause cancer."

| AI                      | 1996      | 1997      | 1998      | 1999      | 2000      | 2001      | 2002      | 2003      | 2004      | 2005      | 2006      |
|-------------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| ORTHO-<br>PHENYLPHENOL  | 67        | 75        | 645       | 583       | 321       | 59        |           | 726       |           | 429       | 63        |
| ORTHO-<br>PHENYLPHENOL, |           | 13        |           |           | -         |           |           | 720       | 212       | 723       | 00        |
| SODIUM SALT             | 652       | 0         | 20        | 6,234     | 18,599    | 60        | 40        | 9         | 0         | 0         | 0         |
| OXADIAZON               | 2,213     | 1,833     | 1,983     | 3,408     | 2,660     | 2,637     | 1,838     | 1,904     | 3,120     | 2,209     | 2,141     |
| OXYTHIOQUINOX           | 8,768     | 5,896     | 5,306     | 2,152     | 817       | 250       | 182       | 71        | 137       | 14        | 10        |
| PARA-                   |           |           |           |           |           |           |           |           |           |           |           |
| DICHLOROBENZENE         | 0         | 0         | 10        | 0         | 0         | 0         | 0         | 0         | 0         | 0         | o         |
| PENTACHLOROPHENOL       | 15        | 4         | 190       | 0         | 59        | 38        | 0         | 0         | 20        | 3         | 1         |
| POTASSIUM               |           |           |           |           |           |           |           |           |           |           |           |
| DICHROMATE              | 0         | 0         | 40        | 71        | 40        | 0         | 20        | 0         | 0         | 10        | 0         |
| PROPARGITE              | 980,963   | 989,265   | 756,098   | 795,410   | 704,529   | 606,737   | 524,439   | 558,056   | 543,728   | 519,412   | 286,592   |
| PROPOXUR                | 9         | 73        | 45        | 39        | 26        | 4         | 23        | 1         | 7         | 8         | <1        |
| PROPYLENE OXIDE         | 0         | <1        | 0         | 573       | 0         | 0         | <1        | 0         | 22        | 185       | 20        |
| PROPYZAMIDE             | 150,791   | 140,791   | 144,864   | 142,194   | 137,337   | 145,325   | 140,803   | 132,819   | 147,631   | 148,376   | 152,835   |
| SODIUM DICHROMATE       | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0         |
| TERRAZOLE               | 43        | 40        | 78        | 44        | 126       | 132       | 47        | 266       | 253       | 495       | 884       |
| THIODICARB              | 176,788   | 223,154   | 155,440   | 83,796    | 50,604    | 13,382    | 8,258     | 12,113    | 3,684     | 2,965     | 1,293     |
| VINCLOZOLIN             | 82,968    | 67,373    | 69,067    | 63,931    | 43,702    | 38,570    | 27,795    | 21,692    | 18,207    | 3,899     | 440       |
| Grand Total             | 5,567,551 | 5,141,327 | 6,748,098 | 5,156,146 | 6,503,992 | 3,629,339 | 3,421,030 | 3,812,918 | 3,657,305 | 3,980,588 | 3,692,995 |

**Figure 2.** Use trends of pesticides that are listed by U.S. EPA as B2 carcinogens or that are on the State's Proposition 65 list of chemicals "known to cause cancer." Reported pounds of active ingredient (AI) applied include both agricultural and reportable non-agricultural applications. The reported cumulative acres treated include primarily agricultural applications. Data are from the Department of Pesticide Regulation's Pesticide Use Reports.



#### USE TRENDS OF CHOLINESTERASE-INHIBITING PESTICIDES

**Table 5A.** The reported pounds of cholinesterase-inhibiting pesticides used. These pesticides are the currently registered organophosphate and carbamate active ingredients. Use includes both agricultural and reportable non-agricultural applications. Data are from the Department of Pesticide Regulation's Pesticide Use Reports.

| Al                | 1996      |           | 1998      | 1999      | 2000      | 2001      | 2002      | 2003      | 2004      | 2005      | 2006      |
|-------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| 3-IODO-2-PROPYNYL |           |           |           |           |           |           |           |           |           |           |           |
| BUTYLCARBAMATE    | <1        | 0         | 1         | <1        | <1        | <1        | 0         | 0         | 0         | 0         | 0         |
| ACEPHATE          | 355,642   | 343,840   | 384,524   | 307,164   | 283,367   | 240,132   | 217,397   | 221,781   | 204,824   | 195,507   | 163,662   |
| ALDICARB          | 545,117   | 530,066   | 534,665   | 280,585   | 329,319   | 297,244   | 244,786   | 262,103   | 231,012   | 230,409   | 174,196   |
| AZINPHOS-METHYL   | 406,099   | 336,353   | 193,069   | 216,624   | 185,055   | 163,121   | 151,612   | 213,892   | 50,562    | 55,179    | 38,775    |
| BENDIOCARB        | 1,674     | 259       | 125       | 108       | 593       | 62        | 32        | 23        | 9         | 6         | 2         |
| BENSULIDE         | 94,593    | 130,046   | 192,500   | 242,460   | 216,120   | 186,908   | 192,220   | 228,739   | 237,290   | 246,148   | 282,364   |
| BUTYLATE          | 87,612    | 84,268    | 69,805    | 71,071    | 32,658    | 27,640    | 19,412    | 26,826    | 20,323    | 9,923     | 2,671     |
| CARBARYL          | 810,162   | 754,659   | 427,546   | 388,144   | 364,060   | 286,199   | 256,098   | 205,102   | 240,135   | 190,633   | 156,938   |
| CARBOFURAN        | 220,622   | 183,321   | 161,588   | 138,665   | 132,427   | 95,863    | 81,486    | 49,276    | 30,354    | 28,093    | 23,371    |
| CHLORPROPHAM      | 3,015     | 2,057     | 2,321     | 3,102     | 3,544     | 3,504     | 1,380     | 6,191     | 2,861     | 2,822     | 3,704     |
| CHLORPYRIFOS      | 2,723,883 | 3,212,165 | 2,451,980 | 2,259,221 | 2,094,179 | 1,673,097 | 1,419,665 | 1,545,670 | 1,778,342 | 2,005,006 | 1,919,625 |
| COUMAPHOS         | 0         | 0         | 0         | 15        | 152       | 97        | 62        | 64        | 63        | 1         | 3         |
| CYCLOATE          | 44,628    | 55,458    | 62,753    | 49,096    | 37,416    | 31,785    | 34,387    | 30,012    | 43,209    | 39,709    | 41,298    |
| DDVP              | 13,097    | 13,636    | 13,998    | 12,325    | 12,680    | 12,833    | 8,477     | 3,446     | 3,807     | 4,914     | 6,527     |
| DEMETON           | 411       | 0         | 3         | 5         | 2         | 3         | 42        | <1        | 0         | 1         | <1        |
| DESMEDIPHAM       | 6,092     | 6,188     | 4,737     | 6,014     | 6,651     | 3,750     | 3,398     | 3,636     | 3,842     | 3,921     | 2,944     |
| DIAZINON          | 1,095,627 | 956,267   | 901,388   | 983,628   | 1,058,311 | 999,578   | 690,375   | 523,957   | 492,148   | 398,583   | 385,512   |
| DICROTOPHOS       | 3         | 0         | 11        | 122       | 0         | 2         | 27        | 41        | 0         | 2         | 6         |
| DIMETHOATE        | 420,389   | 515,935   | 398,448   | 486,554   | 396,231   | 285,548   | 309,371   | 294,368   | 332,049   | 310,397   | 292,612   |
| DISULFOTON        | 142,372   | 128,335   | 105,327   | 95,919    | 76,201    | 51,545    | 54,567    | 46,815    | 41,317    | 31,799    | 22,601    |
| EPTC              | 703,996   | 579,245   | 393,031   | 448,883   | 323,624   | 276,724   | 253,634   | 141,552   | 182,532   | 181,790   | 106,125   |
| ETHEPHON          | 951,418   | 882,802   | 762,217   | 734,263   | 734,838   | 620,075   | 538,403   | 574,377   | 637,205   | 642,137   | 579,062   |
| ETHION            | 2         | 3         | 906       | 64        | 0         | 5         | 13        | 13        | <1        | 261       | 13        |
| ETHOPROP          | 27,955    | 23,842    | 27,949    | 26,196    | 16,119    | 19,046    | 16,531    | 28,419    | 23,130    | 18,924    | 24,485    |
| FENAMIPHOS        | 189,379   | 156,280   | 125,459   | 107,745   | 104,517   | 66,330    | 70,939    | 59,421    | 58,691    | 46,336    | 33,511    |
| FENTHION          | 141       | 176       | 29        | 22        | 33        | 61        | 79        | 3         | 36        | 15        | 2         |
| FONOFOS           | 67,969    | 50,555    | 25,349    | 24,216    | 4,370     | 580       | 465       | 182       | 30        | 15        | 0         |
| FORMETANATE       |           |           |           |           |           |           |           |           |           |           |           |
| HYDROCHLORIDE     | 106,168   | 97,907    | 77,723    | 65,030    | 43,941    | 45,280    | 35,798    | 28,420    | 30,651    | 30,684    | 33,738    |
| MALATHION         | 678,702   | 790,290   | 663,200   | 704,893   | 505,770   | 554,872   | 624,604   | 654,155   | 492,548   | 423,433   | 409,787   |

**Table 5A** (cont.). The reported pounds of cholinesterase-inhibiting pesticides used. These pesticides are the currently registered organophosphate and carbamate active ingredients.

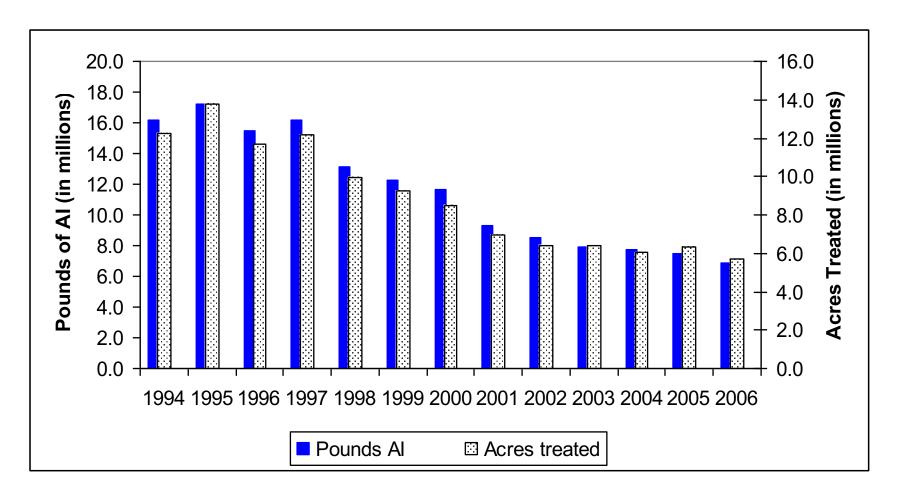
| Al                                                       | 1996      | 1997      | 1998      | 1999    | 2000      | 2001    | 2002    | 2003    | 2004    | 2005    | 2006    |
|----------------------------------------------------------|-----------|-----------|-----------|---------|-----------|---------|---------|---------|---------|---------|---------|
| METHAMIDOPHOS                                            | 260,255   | 312,067   | 244,269   | 116,284 | 76,865    | 46,615  | 30,645  | 36,987  | 31,332  | 37,806  | 30,570  |
| METHIDATHION                                             | 328,895   | 309,314   | 178,451   | 177,105 | 98,129    | 93,521  | 68,389  | 54,398  | 61,204  | 48,857  | 56,676  |
| METHIOCARB                                               | 2,120     | 4,769     | 5,384     | 3,314   | 2,420     | 2,265   | 1,858   | 2,256   | 2,789   | 2,313   | 1,788   |
| METHOMYL                                                 | 671,737   | 824,048   | 666,694   | 551,115 | 554,142   | 378,132 | 295,237 | 359,050 | 262,195 | 346,672 | 316,081 |
| METHYL PARATHION                                         | 130,614   | 153,737   | 158,248   | 157,439 | 75,075    | 59,620  | 53,955  | 73,365  | 71,525  | 78,821  | 84,785  |
| MEVINPHOS                                                | 65        | 493       | 483       | 1,268   | 539       | 393     | 40      | 114     | 1       | 160     | 18      |
| MEVINPHOS, OTHER<br>RELATED                              | 38        | 283       | 298       | 843     | 301       | 249     | 23      | 76      | <1      | 107     | 12      |
| MEXACARBATE                                              | 31        | 17        | 11        | 1       | 0         | 0       | 0       | 0       | 0       | 0       | 0       |
| MOLINATE                                                 | 1,356,258 | 1,170,699 | 1,006,025 | 911,376 | 1,025,786 | 733,534 | 877,572 | 539,871 | 367,155 | 171,362 | 141,421 |
| NALED                                                    | 351,361   | 616,577   | 260,291   | 302,708 | 246,548   | 276,651 | 177,102 | 185,611 | 152,479 | 223,725 | 185,219 |
| O,O-DIMETHYL O-(4-<br>NITRO-M-TOLYL)<br>PHOSPHOROTHIOATE | 0         | 0         | 0         | 0       | 0         | 0       | 0       | 0       | 0       | 0       | <1      |
| OXAMYL                                                   | 82,327    | 119,441   | 161,042   | 128,662 | 137,522   | 76,971  | 80,315  | 93,781  | 112,603 | 153,167 | 116,639 |
| OXYDEMETON-METHYL                                        | 107,410   | 117,159   | 90,790    | 122,912 | 110,754   | 99,756  |         | 93,774  | 102,563 | 121,910 | 119,713 |
| PARATHION                                                | 14,050    | 5,187     | 5,762     | 4,041   | 3,581     | 2,589   | 3,205   | 611     | 240     | 855     | 1,542   |
| PEBULATE                                                 | 202,634   | 184,015   | 185,696   | 225,077 | 160,018   | 45,619  | 71,721  | 35,755  | 10,118  | 1,154   | 210     |
| PHENMEDIPHAM                                             | 6,612     | 6,621     | 5,836     | 6,735   | 7,427     | 4,249   | 4,351   | 5,021   | 4,576   | 5,171   | 4,036   |
| PHORATE                                                  | 132,262   | 114,766   | 122,603   | 93,488  | 87,974    | 70,645  | 76,482  | 64,947  | 60,162  | 48,981  | 35,787  |
| PHOSALONE                                                | 27        | 33        | 11        | 0       | 4         | 0       | 0       | 0       | 0       | 0       | 0       |
| PHOSMET                                                  | 395,160   | 568,933   | 645,380   | 638,704 | 580,522   | 482,481 | 405,236 | 341,541 | 658,087 | 547,813 | 626,821 |
| POTASSIUM DIMETHYL<br>DITHIO CARBAMATE                   | 0         | 15        | 24,795    | 0       | 0         | 0       | 23      | 28      | 293     | 0       | 0       |
| PROFENOFOS                                               | 184,264   | 150,575   | 40,433    | 49,575  | 43,879    | 22,011  | 24,452  | 12,871  | 15,620  | 23,924  | 20,885  |
| PROPAMOCARB<br>HYDROCHLORIDE                             | 16,341    | 10,215    | 57,121    | 6,285   | 4,959     | 2,288   | 828     | 83      | 5       | 0       | 341     |
| PROPETAMPHOS                                             | 23,249    | 17,338    | 9,970     | 6,074   | 4,583     | 3,991   | 2,464   | 721     | 315     | 148     | 206     |
| PROPOXUR                                                 | 1,341     | 1,760     | 1,604     | 1,735   | 2,145     | 611     | 450     | 306     | 223     | 220     | 210     |
| S,S,S-TRIBUTYL<br>PHOSPHOROTRITHIOATE                    | 757,987   | 624,781   | 438,038   | 345,842 | 396,827   | 257,062 | 190,149 | 233,640 | 179,690 | 100,210 | 77,133  |

**Table 5A** (cont.). The reported pounds of cholinesterase-inhibiting pesticides used. These pesticides are the currently registered organophosphate and carbamate active ingredients.

| Al                                  | 1996       | 1997       | 1998       | 1999       | 2000       | 2001      | 2002      | 2003      | 2004      | 2005      | 2006      |
|-------------------------------------|------------|------------|------------|------------|------------|-----------|-----------|-----------|-----------|-----------|-----------|
| SODIUM DIMETHYL<br>DITHIO CARBAMATE | 0          | 0          | 8,279      | 355        | 1,315      | 173       | 0         | 0         | 10,693    | 30,440    | 22,306    |
| SULFOTEP                            | 316        | 355        | 213        | 246        | 215        | 267       | 77        | 8         | 29        | 17        | 1         |
| SULPROFOS                           | 0          | 119        | 84         | 0          | 0          | <1        | 0         | 0         | 0         | 0         | 0         |
| TETRACHLORVINPHOS                   | 7,056      | 6,044      | 5,831      | 3,975      | 4,687      | 4,746     | 3,285     | 1,262     | 722       | 788       | 1,203     |
| THIOBENCARB                         | 618,412    | 894,287    | 724,926    | 732,505    | 1,007,249  | 644,625   | 839,962   | 587,211   | 521,586   | 448,208   | 308,497   |
| THIODICARB                          | 122,927    | 156,092    | 114,785    | 60,453     | 36,704     | 9,042     | 5,195     | 8,392     | 2,249     | 1,872     | 894       |
| TRICHLORFON                         | 3,327      | 3,843      | 2,476      | 2,779      | 3,996      | 3,004     | 1,545     | 1,068     | 1,035     | 1,222     | 1,003     |
| Grand Total                         | 15,473,843 | 16,207,537 | 13,146,480 | 12,303,033 | 11,636,346 | 9,262,992 | 8,536,181 | 7,881,229 | 7,766,461 | 7,492,569 | 6,857,530 |

**Table 5B.** The reported cumulative acres treated with cholinesterase-inhibiting pesticides. These pesticides are the currently registered organophosphate and carbamate active ingredients. Use includes primarily agricultural applications. The grand total for acres treated is less than the sum of acres treated for all active ingredients because some products contain more than one active ingredient. Data are from the Department of Pesticide Regulation's Pesticide Use Reports.

| Al                                  | 1996      | 1997      | 1998      | 1999      | 2000      | 2001      | 2002      | 2003      | 2004      | 2005      | 2006      |
|-------------------------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| 3-IODO-2-PROPYNYL<br>BUTYLCARBAMATE | 0         | 0         | 150       | 0         | 0         | 40        | 0         | 0         | 0         | 0         | 0         |
| ACEPHATE                            | 406,607   | 372,566   | 403,545   | 370,111   | 295,383   | 266,278   | 232,949   | 223,408   | 211,892   | 198,982   | 171,791   |
| ALDICARB                            | 490,499   | 442,029   | 397,890   | 266,773   | 314,440   | 282,453   | 225,820   | 231,090   | 217,540   | 214,260   | 155,823   |
| AZINPHOS-METHYL                     | 277,745   | 233,406   | 134,334   | 140,226   | 118,805   | 117,544   | 94,035    | 117,060   | 38,622    | 37,622    | 25,534    |
| BENDIOCARB                          | 188       | 19        | 28        | 11        | <1        | 2         | 0         | 9         | <1        | 1         | 0         |
| BENSULIDE                           | 31,916    | 45,795    | 61,984    | 80,873    | 73,088    | 62,859    | 60,883    | 66,376    | 70,367    | 70,546    | 81,825    |
| BUTYLATE                            | 17,689    | 17,572    | 14,259    | 14,959    | 7,235     | 6,270     | 4,598     | 5,450     | 3,940     | 1,954     | 610       |
| CARBARYL                            | 312,058   | 292,721   | 197,664   | 216,991   | 196,464   | 147,612   | 106,616   | 97,811    | 103,261   | 99,086    | 87,749    |
| CARBOFURAN                          | 364,150   | 322,064   | 303,957   | 272,441   | 258,441   | 246,149   | 182,567   | 91,801    | 50,138    | 55,488    | 40,321    |
| CHLORPROPHAM                        | 4         | 26        | 106       | 151       | 127       | 112       | 80        | 124       | 166       | 88        | 115       |
| CHLORPYRIFOS                        | 1,869,874 | 2,223,551 | 1,669,859 | 1,420,414 | 1,441,956 | 1,355,172 | 1,235,816 | 1,478,783 | 1,323,331 | 1,680,284 | 1,535,021 |
| COUMAPHOS                           | 0         | 0         | 0         | 0         | 1,339     | 809       | 1,073     | 17        | 49        | <1        | 3         |
| CYCLOATE                            | 19,597    | 25,986    | 29,761    | 24,555    | 18,495    | 15,918    | 17,228    | 16,713    | 20,699    | 19,319    | 19,789    |
| DDVP                                | 1,499     | 2,596     | 3,692     | 2,180     | 2,336     | 3,954     | 4,327     | 2,576     | 1,637     | 7,445     | 1,526     |
| DEMETON                             | 1,002     | 0         | 18        | 66        | 0         | 56        | 0         | 2         | 0         | 35        | 0         |
| DESMEDIPHAM                         | 51,183    | 61,368    | 56,272    | 71,977    | 60,248    | 34,738    | 32,344    | 35,435    | 37,152    | 35,795    | 30,715    |
| DIAZINON                            | 680,947   | 530,355   | 477,809   | 546,577   | 480,083   | 437,934   | 489,230   | 483,344   | 509,233   | 440,771   | 439,440   |
| DICROTOPHOS                         | 9         | 0         | 16        | 11        | 0         | 0         | 0         | 64        | 0         | 0         | 110       |
| DIMETHOATE                          | 955,466   | 1,097,752 | 872,311   | 1,078,024 | 877,751   | 639,271   | 681,367   | 621,074   | 701,470   | 672,666   | 610,147   |
| DISULFOTON                          | 147,078   | 124,319   | 100,935   | 86,332    | 69,067    | 45,258    | 48,723    | 39,182    | 34,481    | 25,320    | 18,926    |
| EPTC                                | 232,820   | 208,093   | 141,511   | 148,685   | 107,758   | 99,953    | 94,240    | 56,639    | 64,194    | 64,230    | 38,073    |
| ETHEPHON                            | 776,247   | 700,941   | 653,817   | 720,773   | 697,340   | 631,330   | 550,256   | 601,503   | 660,356   | 679,253   | 634,883   |
| ETHION                              | 5         | 2         | 621       | 53        | 0         | 5         | 0         | 1         | 0         | 66        | 32        |
| ETHOPROP                            | 3,139     | 3,213     | 3,784     | 3,610     | 3,477     | 3,542     | 4,152     | 6,078     | 4,917     | 4,296     | 4,815     |
| FENAMIPHOS                          | 111,729   | 97,013    | 72,102    | 66,100    | 60,340    | 36,999    | 38,397    | 36,293    | 34,142    | 29,314    | 18,918    |
| FENTHION                            | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 18        | 0         | 0         |
| FONOFOS                             | 55,207    | 36,123    | 16,926    | 14,146    | 2,325     | 497       | 234       | 116       | 20        | 15        | 0         |
| FORMETANATE<br>HYDROCHLORIDE        | 103,521   | 95,544    | 77,965    | 63,047    | 42,880    | 45,234    | 36,131    | 29,411    | 33,167    | 31,775    | 35,293    |
| MALATHION                           | 363,635   | 410,658   | 383,121   | 403,646   | 324,031   | 290,933   | 314,683   | 287,467   | 249,319   | 226,662   | 217,338   |
|                                     | 000,000   | ,         | 000, 12 1 | .00,010   | 02 1,00 1 | _00,000   | 5,500     | 20.,.01   | 0,510     | ,502      | ,500      |


**Table 5B** (cont.). The reported cumulative acres treated with cholinesterase-inhibiting pesticides. These pesticides are the currently registered organophosphate and carbamate active ingredients.

| Al                                                       | 1996      | 1997      | 1998      | 1999    | 2000    | 2001    | 2002    | 2003    | 2004    | 2005    | 2006    |
|----------------------------------------------------------|-----------|-----------|-----------|---------|---------|---------|---------|---------|---------|---------|---------|
| METHAMIDOPHOS                                            | 313,618   | 263,816   | 290,061   | 158,079 | 101,494 | 63,046  | 37,012  | 41,506  | 38,874  | 45,835  | 37,585  |
| METHIDATHION                                             | 245,914   | 200,528   | 129,358   | 115,249 | 71,992  | 64,785  | 48,554  | 38,516  | 45,281  | 37,751  | 34,765  |
| METHIOCARB                                               | 1,511     | 2,906     | 3,523     | 2,369   | 2,719   | 1,866   | 2,000   | 1,757   | 3,064   | 2,501   | 3,064   |
| METHOMYL                                                 | 1,145,115 | 1,376,868 | 1,118,188 | 880,910 | 893,568 | 627,264 | 510,006 | 615,669 | 437,673 | 612,249 | 527,225 |
| METHYL PARATHION                                         | 125,729   | 125,638   | 128,675   | 119,315 | 43,773  | 39,449  | 37,514  | 51,252  | 48,640  | 49,771  | 51,184  |
| MEVINPHOS                                                | 538       | 595       | 1,094     | 753     | 528     | 143     | 160     | 192     | 3       | 215     | 8       |
| MEVINPHOS, OTHER<br>RELATED                              | 538       | 595       | 1,094     | 753     | 528     | 143     | 160     | 192     | 3       | 215     | 8       |
| MEXACARBATE                                              | 34        | 19        | 15        | 1       | 0       | 0       | 0       | 0       | 0       | 0       | 0       |
| MOLINATE                                                 | 357,239   | 317,680   | 267,078   | 246,084 | 276,315 | 190,488 | 222,044 | 134,120 | 89,593  | 40,535  | 33,045  |
| NALED                                                    | 338,921   | 606,265   | 251,044   | 279,898 | 244,677 | 234,184 | 155,295 | 148,776 | 110,218 | 191,906 | 159,851 |
| O,O-DIMETHYL O-(4-<br>NITRO-M-TOLYL)<br>PHOSPHOROTHIOATE | 0         | 0         | 0         | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       |
| OXAMYL                                                   | 122,353   | 176,793   | 225,380   | 177,183 | 179,048 | 100,294 | 98,313  | 115,275 | 135,832 | 178,893 | 137,541 |
| OXYDEMETON-METHYL                                        | 220,824   | 244,056   | 186,964   | 253,281 | 225,990 | 200,171 | 193,453 | 189,015 | 206,751 | 173,480 | 164,094 |
| PARATHION                                                | 5,099     | 2,071     | 2,592     | 1,976   | 4,025   | 2,977   | 7,026   | 1,006   | 392     | 717     | 713     |
| PEBULATE                                                 | 74,647    | 69,381    | 64,501    | 74,697  | 51,205  | 15,122  | 21,491  | 10,680  | 4,319   | 297     | 35      |
| PHENMEDIPHAM                                             | 52,125    | 62,449    | 58,649    | 73,905  | 61,975  | 35,477  | 34,452  | 38,265  | 38,964  | 38,675  | 33,040  |
| PHORATE                                                  | 123,789   | 106,427   | 109,759   | 81,724  | 71,407  | 63,160  | 58,391  | 50,290  | 47,488  | 35,938  | 26,524  |
| PHOSALONE                                                | 18        | 64        | 5         | 0       | 10      | 0       | 0       | 0       | 0       | 0       | 0       |
| PHOSMET                                                  | 214,416   | 236,611   | 312,707   | 253,234 | 219,707 | 189,517 | 159,065 | 128,037 | 209,843 | 170,683 | 199,719 |
| POTASSIUM DIMETHYL<br>DITHIO CARBAMATE                   | 0         | 0         | 0         | 0       | 0       | 0       | 2       | 6       | 0       | 0       | 0       |
| PROFENOFOS                                               | 211,769   | 162,204   | 44,641    | 46,250  | 46,617  | 23,700  | 25,997  | 13,599  | 11,657  | 25,096  | 20,563  |
| PROPAMOCARB<br>HYDROCHLORIDE                             | 23,793    | 14,677    | 81,050    | 6,851   | 17,696  | 2,625   | 1,041   | 22      | 10      | 0       | 138     |
| PROPETAMPHOS                                             | 0         | 0         | 0         | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       |
| PROPOXUR                                                 | 9         | 73        | 45        | 39      | 26      | 4       | 23      | 1       | 7       | 8       | <1      |
| S,S,S-TRIBUTYL<br>PHOSPHOROTRITHIOATE                    | 531,052   | 437,505   | 305,306   | 245,470 | 282,844 | 187,153 | 129,570 | 158,604 | 133,535 | 74,538  | 51,658  |

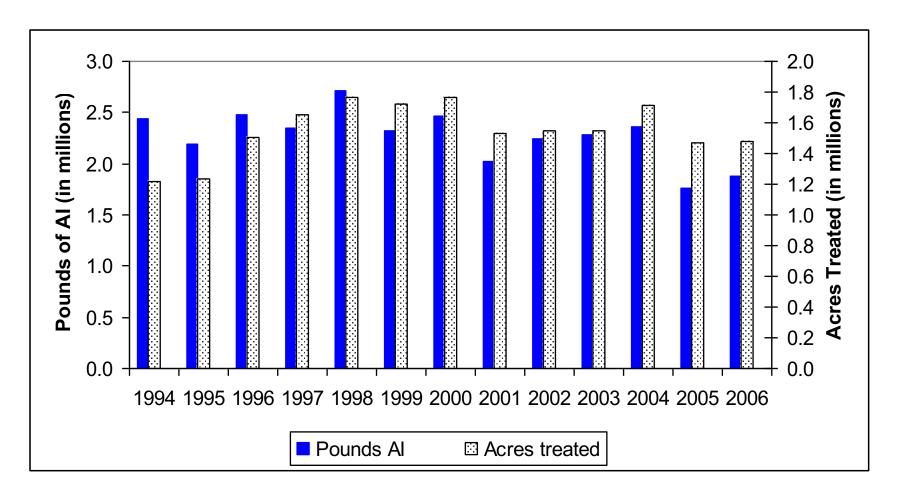
**Table 5B** (cont.). The reported cumulative acres treated with cholinesterase-inhibiting pesticides. These pesticides are the currently registered organophosphate and carbamate active ingredients.

| Al                                  | 1996       | 1997       | 1998       | 1999      | 2000      | 2001      | 2002      | 2003      | 2004      | 2005      | 2006      |
|-------------------------------------|------------|------------|------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| SODIUM DIMETHYL<br>DITHIO CARBAMATE | 0          | 0          | 253        | 20        | 0         | 60        | 0         | 0         | 0         | 0         | 0         |
| SULFOTEP                            | 408        | 251        | 241        | 224       | 168       | 314       | 57        | 3         | 8         | 9         | 0         |
| SULPROFOS                           | 0          | 83         | 80         | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0         |
| TETRACHLORVINPHOS                   | 674        | 356        | 3,109      | 1,543     | 575       | 232       | 125       | 6         | 291       | 1,518     | 1         |
| THIOBENCARB                         | 159,121    | 227,658    | 187,295    | 186,341   | 252,506   | 169,056   | 222,606   | 154,952   | 136,132   | 118,786   | 79,109    |
| THIODICARB                          | 176,788    | 223,154    | 155,440    | 83,796    | 50,604    | 13,382    | 8,258     | 12,113    | 3,684     | 2,965     | 1,293     |
| TRICHLORFON                         | 204        | 149        | 1,071      | 97        | 70        | 51        | 19        | 8         | 0         | 0         | 0         |
| Grand Total                         | 11,720,058 | 12,202,583 | 10,003,653 | 9,302,775 | 8,553,477 | 6,995,585 | 6,428,383 | 6,431,687 | 6,072,373 | 6,397,852 | 5,729,958 |

**Figure 3.** Use trends of cholinesterase-inhibiting pesticides, which includes pesticides with organophosphate and carbamate active ingredients. Reported pounds of active ingredient (AI) applied include both agricultural and reportable non-agricultural applications. The reported cumulative acres treated include primarily agricultural applications. Data are from the Department of Pesticide Regulation's Pesticide Use Reports.



#### USE TRENDS OF PESTICIDES ON DPR'S GROUND WATER PROTECTION LIST


**Table 6A.** The reported pounds of pesticides on the "a" part of DPR's groundwater protection list. These pesticides are the currently registered active ingredients listed in the California Code of Regulations, Title 3, Division 6, Chapter 4, Subchapter 1, Article 1, Section 6800(a). Use includes both agricultural and reportable non-agricultural applications. Data are from the Department of Pesticide Regulation's Pesticide Use Reports.

| Al                      | 1996      | 1997      | 1998      | 1999      | 2000      | 2001      | 2002      | 2003      | 2004      | 2005      | 2006      |
|-------------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| ATRAZINE                | 59,367    | 48,512    | 57,006    | 72,167    | 61,323    | 62,879    | 59,292    | 58,248    | 38,776    | 32,908    | 33,199    |
| ATRAZINE, OTHER RELATED | 1,238     | 1,025     | 1,289     | 1,509     | 1,282     | 1,314     | 1,237     | 1,213     | 812       | 693       | 688       |
| BENTAZON, SODIUM SALT   | 1,518     | 1,907     | 1,757     | 1,876     | 1,210     | 393       | 1,045     | 1,216     | 1,370     | 2,272     | 2,633     |
| BROMACIL                | 98,293    | 82,540    | 84,645    | 75,613    | 68,233    | 56,128    | 55,821    | 56,427    | 56,476    | 48,929    | 62,516    |
| BROMACIL, LITHIUM SALT  | 17,381    | 9,141     | 4,686     | 4,162     | 4,478     | 3,217     | 4,016     | 3,025     | 1,801     | 1,059     | 2,529     |
| DIURON                  | 1,266,315 | 1,228,277 | 1,504,731 | 1,188,553 | 1,351,232 | 1,105,536 | 1,302,603 | 1,344,596 | 1,398,123 | 955,983   | 1,045,525 |
| NORFLURAZON             | 196,142   | 212,621   | 265,886   | 286,214   | 259,328   | 208,667   | 187,927   | 146,408   | 139,960   | 94,037    | 105,215   |
| PROMETON                | 68        | 20        | 22        | 4         | 28        | 2         | 21        | 2         | 20        | 3         | 8         |
| SIMAZINE                | 841,067   | 766,185   | 795,103   | 696,768   | 713,757   | 585,400   | 632,901   | 670,916   | 729,850   | 623,806   | 631,600   |
| Grand Total             | 2,481,387 | 2,350,228 | 2,715,125 | 2,326,865 | 2,460,871 | 2,023,534 | 2,244,862 | 2,282,050 | 2,367,186 | 1,759,691 | 1,883,913 |

**Table 6B.** The reported cumulative acres treated with pesticides on the "a" part of DPR's groundwater protection list. These pesticides are the currently registered active ingredients listed in the California Code of Regulations, Title 3, Division 6, Chapter 4, Subchapter 1, Article 1, Section 6800(a). Use includes both agricultural and reportable non-agricultural applications. Data are from the Department of Pesticide Regulation's Pesticide Use Reports.

|                         | <u> </u>  |           |           |           |           |           |           |           |           |           |           |
|-------------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| AI                      | 1996      | 1997      | 1998      | 1999      | 2000      | 2001      | 2002      | 2003      | 2004      | 2005      | 2006      |
| ATRAZINE                | 32,043    | 27,257    | 37,556    | 39,881    | 35,757    | 33,376    | 28,589    | 29,966    | 26,989    | 24,005    | 20,239    |
| ATRAZINE, OTHER RELATED | 32,042    | 27,257    | 37,529    | 39,876    | 35,757    | 33,376    | 28,589    | 29,966    | 26,989    | 24,005    | 20,239    |
| BENTAZON, SODIUM SALT   | 1,460     | 2,010     | 1,904     | 1,968     | 1,502     | 432       | 1,094     | 987       | 1,279     | 2,218     | 2,217     |
| BROMACIL                | 62,206    | 58,722    | 57,136    | 53,861    | 42,568    | 30,149    | 29,585    | 27,974    | 26,204    | 21,886    | 19,085    |
| BROMACIL, LITHIUM SALT  | 0         | 0         | 40        | 40        | 30        | 0         | 0         | 0         | 0         | 0         | 0         |
| DIURON                  | 685,352   | 819,993   | 865,246   | 849,482   | 865,974   | 788,559   | 796,904   | 843,897   | 971,628   | 894,073   | 879,497   |
| NORFLURAZON             | 179,015   | 186,991   | 214,144   | 217,178   | 230,848   | 192,305   | 161,746   | 125,619   | 125,802   | 81,589    | 90,910    |
| PROMETON                | 27        | 8         | 85        | 18        | 51        | 0         | 174       | 49        | 171       | 6         | 168       |
| SIMAZINE                | 607,228   | 613,237   | 647,117   | 611,626   | 620,696   | 515,419   | 561,349   | 546,678   | 588,016   | 463,244   | 479,621   |
| Grand Total             | 1,599,373 | 1,735,475 | 1,860,757 | 1,813,930 | 1,833,183 | 1,593,616 | 1,608,031 | 1,605,137 | 1,767,075 | 1,511,025 | 1,511,976 |

**Figure 4.** Use trends of pesticides on DPR's groundwater protection list. These pesticides are the currently registered active ingredients listed in the California Code of Regulations, Title 3, Division 6, Chapter 4, Subchapter 1, Article 1, Section 6800(a). Reported pounds of active ingredient (AI) applied include both agricultural and reportable non-agricultural applications. The reported cumulative acres treated include primarily agricultural applications. Data are from the Department of Pesticide Regulation's Pesticide Use Reports.



#### USE TRENDS OF PESTICIDES ON DPR'S TOXIC AIR CONTAMINATS LIST

**Table 7A.** The reported pounds of pesticides on DPR's toxic air contaminants list applied in California. These pesticides are the currently registered active ingredients listed in the California Code of Regulations, Title 3, Division 6, Chapter 4, Subchapter 1, Article 1, Section 6860. Use includes both agricultural and reportable non-agricultural applications. Data are from the Department of Pesticide Regulation's Pesticide Use Reports.

| Al                                                               | 1996      | 1997      | 1998      | 1999      | 2000      | 2001      | 2002      | 2003      | 2004      | 2005      | 2006      |
|------------------------------------------------------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| 1,3-DICHLOROPROPENE                                              | 1,956,846 | 2,457,690 | 3,011,057 | 3,321,147 | 4,465,422 | 4,141,173 | 5,413,214 | 7,003,782 | 8,945,145 | 9,355,308 | 8,591,883 |
| 2,4-D                                                            | 22,089    | 10,227    | 3,868     | 3,061     | 2,096     | 1,787     | 1,733     | 1,732     | 1,796     | 1,552     | 1,756     |
| 2,4-D, 2-ETHYLHEXYL<br>ESTER                                     | 10        | 1,313     | 13,750    | 72,225    | 13,911    | 13,706    | 15,801    | 19,715    | 21,130    | 26,632    | 21,014    |
| 2,4-D, ALKANOLAMINE<br>SALTS (ETHANOL AND<br>ISOPROPANOL AMINES) | 29,440    | 25,684    | 29,576    | 15,992    | 6,737     | 674       | 452       | 1,357     | 624       | 458       | 16        |
| 2,4-D, BUTOXYETHANOL<br>ESTER                                    | 38,624    | 13,344    | 12,867    | 5,628     | 6,194     | 5,336     | 3,556     | 3,812     | 4,782     | 8,190     | 1,758     |
| 2,4-D, BUTOXYPROPYL<br>ESTER                                     | 4         | 13        | 31        | 5         | 4         | 3         | 0         | 0         | 0         | 0         | <1        |
| 2,4-D, BUTYL ESTER                                               | 0         | 0         | 2,180     | 8         | 0         | <1        | 593       | 2         | 0         | 10        | 15        |
| 2,4-D, DIETHANOLAMINE<br>SALT                                    | 3,003     | 24,809    | 14,939    | 5,843     | 13,004    | 6,667     | 8,080     | 8,831     | 5,022     | 3,961     | 2,947     |
| 2,4-D, DIMETHYLAMINE<br>SALT                                     | 469,427   | 430,652   | 422,824   | 356,770   | 426,848   | 395,537   | 425,706   | 511,519   | 470,871   | 454,762   | 437,301   |
| 2,4-D, DODECYLAMINE<br>SALT                                      | 8         | 58        | 75        | 730       | 0         | 257       | 322       | 0         | 0         | 0         | 0         |
| 2,4-D, HEPTYLAMINE SALT                                          | <1        | 0         | 0         | 46        | 0         | 0         | <1        | 0         | 0         | 0         | 0         |
| 2,4-D, ISOOCTYL ESTER                                            | 7,822     | 60,356    | 47,016    | 17,387    | 8,505     | 15,828    | 12,380    | 12,366    | 10,039    | 10,314    | 10,627    |
| 2,4-D, ISOPROPYL ESTER                                           | 5,090     | 6,543     | 7,533     | 6,879     | 7,886     | 6,584     | 7,833     | 8,319     | 9,066     | 10,825    | 10,526    |
| 2,4-D, N-OLEYL-1,3-<br>PROPYLENEDIAMINE SALT                     | 35        | 0         | 3         | 7         | 11        | 0         | 0         | 0         | 0         | 0         | 0         |
| 2,4-D, PROPYL ESTER                                              | 1,774     | 1,575     | 999       | 1,822     | 783       | 391       | 634       | 326       | 472       | 382       | 398       |
| 2,4-D, TETRADECYLAMINE<br>SALT                                   | 2         | 13        | 17        | 170       | 0         | 60        | 75        | 0         | 0         | 0         | 0         |
| 2,4-D, TRIETHYLAMINE<br>SALT                                     | 93,876    | 34,610    | 5,688     | 2,344     | 1,102     | 634       | 426       | 435       | 386       | 203       | 1,614     |
| 2,4-D, TRIISOPROPYLAMINE<br>SALT                                 | 2         | 3         | 5         | 6         | 0         | 5         | 9         | 6         | 0         | 0         | 438       |
| ACROLEIN                                                         | 322,578   | 341,245   | 264,207   | 328,238   | 290,180   | 233,928   | 282,590   | 272,733   | 211,014   | 257,189   | 246,444   |

Table 7A (cont.). The reported pounds of pesticides on DPR's toxic air contaminants list applied in California.

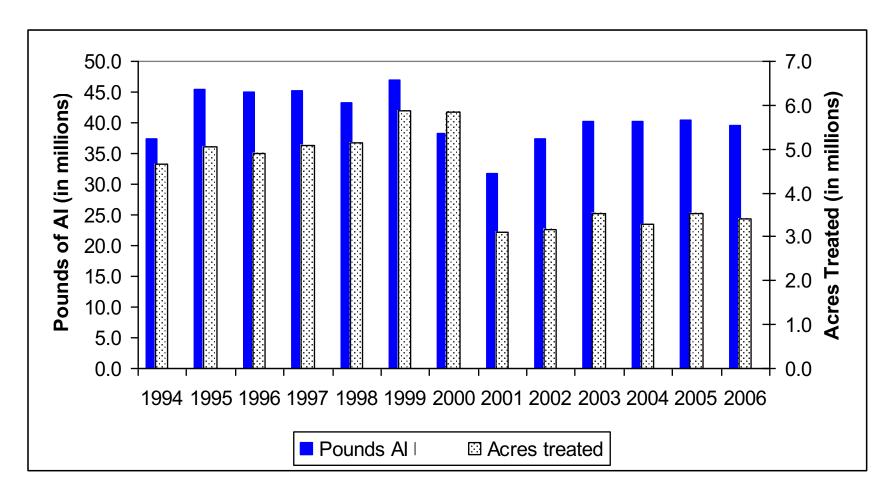
| Al                          | 1996       | 1997       | 1998       | 1999       | 2000       | 2001       | 2002       | 2003       | 2004       | 2005       | 2006       |
|-----------------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| ALUMINUM PHOSPHIDE          | 105,291    |            |            |            | 119,776    |            |            |            | 131,303    | 135,751    | 148,735    |
| ARSENIC ACID                | 53,777     | 59,835     | 52,558     | 48,029     | 11,906     | 12,023     | 4,976      | 318        | 223        | 68         | 3          |
| ARSENIC PENTOXIDE           | 205,089    | 64,372     | 50,899     | 245,238    | 91,267     | 259,400    | 194,650    | 129,889    | 12,705     | 180,505    | 474,517    |
| ARSENIC TRIOXIDE            | <1         | <1         | 1          | 1          | <1         | <1         | <1         | <1         | <1         | <1         | <1         |
| CAPTAN                      | 919,016    | 801,899    | 1,542,556  | 966,020    | 643,826    | 399,146    | 395,575    | 498,445    | 370,418    | 468,413    | 508,883    |
| CAPTAN, OTHER RELATED       | 21,636     | 19,341     | 35,925     | 22,219     | 14,654     | 9,014      | 9,020      | 11,309     | 8,271      | 10,540     | 11,747     |
| CARBARYL                    | 810,162    | 754,659    | 427,546    | 388,144    | 364,060    | 286,199    | 256,098    | 205,102    | 240,135    | 190,633    | 156,938    |
| CHLORINE                    | 816,318    | 509,787    | 431,546    | 628,546    | 654,541    | 296,469    | 502,944    | 619,735    | 516,546    | 613,837    | 730,986    |
| CHROMIC ACID                | 286,521    | 89,931     | 71,109     | 343,543    | 128,642    | 363,225    | 272,300    | 182,022    | 17,753     | 252,176    | 662,927    |
| DAZOMET                     | 12,851     | 15,884     | 15,246     | 12,409     | 10,981     | 44,299     | 45,020     | 34,848     | 58,492     | 48,263     | 34,307     |
| DDVP                        | 13,097     | 13,636     | 13,998     | 12,325     | 12,680     | 12,833     | 8,477      | 3,446      | 3,807      | 4,914      | 6,527      |
| ETHYLENE OXIDE              | 0          | 0          | 31         | 2          | 6          | 3          | 0          | 0          | 0          | 0          | 0          |
| FORMALDEHYDE                | 334,548    | 416,823    | 349,785    | 111,714    | 55,300     | 28,612     | 14,035     | 18,690     | 111,151    | 48,968     | 73,392     |
| HYDROGEN CHLORIDE           | 1,938      | 129        | 762        | 11,067     | 3,316      | 4,276      | 4,256      | 3,222      | 2,529      | 14,755     | 2,464      |
| LINDANE                     | 4,668      | 5,511      | 6,330      | 4,842      | 4,746      | 2,388      | 1,630      | 908        | 775        | 40         | 378        |
| MAGNESIUM PHOSPHIDE         | 3,600      | 3,931      | 4,132      | 3,540      | 3,550      | 2,492      | 4,824      | 2,844      | 2,621      | 3,156      | 3,931      |
| MANCOZEB                    | 567,866    | 528,159    | 988,344    | 630,987    | 610,903    | 428,738    | 396,912    | 535,600    | 379,539    | 642,444    | 660,471    |
| MANEB                       | 1,328,368  | 1,082,071  | 1,596,466  | 1,045,567  | 1,202,545  | 816,548    | 851,819    | 1,026,804  | 954,085    | 1,122,684  | 1,175,427  |
| META-CRESOL                 | 3          | 6          | 8          | 11         | 14         | 1          | 1          | 1          | 2          | 1          | <1         |
| METAM-SODIUM                | 15,501,650 | 15,401,098 | 14,120,788 | 17,273,325 | 13,143,954 | 12,460,997 | 15,116,768 | 14,822,689 | 14,698,228 | 12,991,279 | 11,362,375 |
| METHANOL                    | 0          | 0          | 0          | 3          | <1         | 0          | 0          | 0          | 0          | 0          | 0          |
| METHOXYCHLOR                | 484        | 358        | 566        | 16         | 26         | 41         | 144        | 3          | 1          | 13         | 130        |
| METHOXYCHLOR, OTHER RELATED | 62         | 44         | 11         | <1         | 0          | <1         | 0          | 0          | <1         | <1         | 0          |

Table 7A (cont.). The reported pounds of pesticides on DPR's toxic air contaminants list applied in California.

| AI                                    | 1996       | 1997       | 1998       | 1999       | 2000       | 2001       | 2002       | 2003       | 2004       | 2005       | 2006       |
|---------------------------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| METHYL BROMIDE                        | 16,124,148 | 16,711,308 | 14,314,983 | 15,355,845 | 10,900,339 | 6,625,336  | 7,008,644  | 7,289,389  | 7,105,612  | 6,504,576  | 6,518,683  |
| METHYL ISOTHIOCYANATE                 | 0          | 353        | 220        | 616        | 3,323      | 2,871      | 3,512      | 547        | 1,357      | 1,549      | 1,073      |
| METHYL PARATHION                      | 130,614    | 153,737    | 158,248    | 157,439    | 75,075     | 59,620     | 53,955     | 73,365     | 71,525     | 78,821     | 84,785     |
| NAPHTHALENE                           | 0          | 1          | 333        | <1         | 0          | 0          | <1         | 23         | 0          | <1         | 0          |
| PARA-DICHLOROBENZENE                  | 4          | 3          | 219        | 86         | 4          | 11         | 1          | 25         | 10         | 139        | 0          |
| PARATHION                             | 14,050     | 5,187      | 5,762      | 4,041      | 3,581      | 2,589      | 3,205      | 611        | 240        | 855        | 1,542      |
| PCNB                                  | 87,968     | 89,548     | 88,036     | 67,424     | 62,809     | 50,937     | 43,450     | 38,989     | 34,176     | 37,942     | 32,609     |
| PCP, OTHER RELATED                    | <1         | 1          | 2          | 11         | 54         | 2          | 2          | <1         | <1         | <1         | 3          |
| PCP, SODIUM SALT                      | 0          | 0          | 2          | 0          | 0          | <1         | 0          | 0          | 0          | 0          | 0          |
| PENTACHLOROPHENOL                     | 3          | 8          | 33         | 92         | 466        | 14         | 17         | 3          | 2          | 3          | 27         |
| PHENOL                                | 25         | 8          | 44         | 12         | 20         | 30         | 0          | <1         | 9          | 71         | <1         |
| PHOSPHINE                             | 0          | 0          | 0          | 0          | 0          | 44         | 901        | 1,141      | 1,664      | 2,688      | 2,774      |
| PHOSPHORUS                            | 58         | 14         | 12         | 9          | 22         | 3          | 1          | 1          | 1          | <1         | 2          |
| POTASSIUM N-<br>METHYLDITHIOCARBAMATE | 0          | 2,283      | 9,143      | 0          | 105,364    | 464,882    | 1,175,168  | 1,911,698  | 851,181    | 1,994,072  | 3,202,884  |
| POTASSIUM<br>PERMANGANATE             | 0          | 0          | 243        | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          |
| PROPOXUR                              | 1,341      | 1,760      | 1,604      | 1,735      | 2,145      | 611        | 450        | 306        | 223        | 220        | 210        |
| PROPYLENE OXIDE                       | 224,495    | 198,559    | 198,595    | 172,556    | 118,381    | 99,727     | 99,674     | 99,396     | 151,484    | 147,324    | 130,016    |
| S,S,S-TRIBUTYL<br>PHOSPHOROTRITHIOATE | 757,987    | 624,781    | 438,038    | 345,842    | 396,827    | 257,062    | 190,149    | 233,640    | 179,690    | 100,210    | 77,133     |
| SODIUM CYANIDE                        | 1,326      | 2,176      |            | 1,098      |            | 2,437      | 2,542      | 2,808      | 2,865      | 3,086      |            |
| SODIUM DICHROMATE                     | 180,478    | 182,185    |            | 32,699     |            | 329        | 633        | 217        | Ó          | . 0        | , 0        |
| SODIUM<br>TETRATHIOCARBONATE          | 543,229    | 799,092    | ,          | 688,701    | 596,028    | 375,487    | 352,342    | 212,308    | 259,542    | 330,886    | 171,194    |
| SULFURYL FLUORIDE                     | 1,805,401  | 1,938,835  | 2,173,338  | 2,790,343  | 2,428,345  | 2,585,680  | 3,047,882  | 3,138,687  | 3,270,698  | 3,394,126  | 2,871,378  |
| TRIFLURALIN                           | 1,144,893  | 1,193,924  | 1,220,106  | 1,261,482  | 1,162,157  | 934,018    | 1,091,597  | 1,061,631  | 1,023,142  | 1,027,804  | 1,032,495  |
| XYLENE                                | 12,619     | 8,511      | 5,362      | 4,847      | 4,292      | 9,544      | 2,680      | 4,349      | 2,109      | 1,598      | 1,418      |
| ZINC PHOSPHIDE                        | 1,217      | 2,343      | 1,200      | 5,447      | 1,609      | 1,116      | 981        | 1,253      | 1,924      | 2,371      | 3,794      |
| Grand Total                           | 44,967,436 | 45,180,809 | 43,256,585 | 46,899,815 | 38,182,518 | 31,821,482 | 37,499,855 | 40,130,710 | 40,146,388 | 40,486,568 | 39,475,747 |

**Table 7B.** The reported cumulative acres treated in California with pesticides on DPR's toxic air contaminants list. These pesticides are the currently registered active ingredients listed in the California Code of Regulations, Title 3, Division 6, Chapter 4, Subchapter 1, Article 1, Section 6860. Use includes primarily agricultural applications. The grand total for acres treated is less than the sum of acres treated for all active ingredients because some products contain more than one active ingredient. Data are from the Department of Pesticide Regulation's Pesticide Use Reports.

| Al                                                               | 1996    | 1997    | 1998    | 1999      | 2000      | 2001    | 2002    | 2003    | 2004    | 2005    | 2006    |
|------------------------------------------------------------------|---------|---------|---------|-----------|-----------|---------|---------|---------|---------|---------|---------|
| 1,3-DICHLOROPROPENE                                              | 17,223  | 22,193  | 27,059  | 29,430    | 33,244    | 30,817  | 42,172  | 48,944  | 56,618  | 51,486  | 48,870  |
| 2,4-D                                                            | 137,230 | 50,709  | 11,649  | 7,791     | 5,134     | 3,952   | 2,304   | 2,562   | 3,377   | 1,466   | 2,963   |
| 2,4-D, 2-ETHYLHEXYL<br>ESTER                                     | 160     | 729     | 6,867   | 7,624     | 8,460     | 6,919   | 10,260  | 22,426  | 20,642  | 21,360  | 15,303  |
| 2,4-D, ALKANOLAMINE<br>SALTS (ETHANOL AND<br>ISOPROPANOL AMINES) | 21,872  | 20,055  | 22,117  | 11,843    | 5,711     | 359     | 264     | 630     | 1,475   | 403     | 6       |
| 2,4-D, BUTOXYETHANOL<br>ESTER                                    | 35,599  | 13,504  | 13,810  | 7,198     | 7,158     | 5,633   | 2,655   | 2,539   | 3,835   | 2,951   | 1,739   |
| 2,4-D, BUTOXYPROPYL<br>ESTER                                     | 2       | 51      | 93      | 37        | 5         | 9       | 0       | 0       | 0       | 0       | 0       |
| 2,4-D, BUTYL ESTER                                               | 0       | 0       | 307     | 37        | 24        | 1       | 101     | 0       | 0       | 8       | 1       |
| 2,4-D, DIETHANOLAMINE<br>SALT                                    | 8,721   | 88,149  | 58,239  | 23,884    | 49,377    | 27,705  | 36,290  | 39,046  | 22,729  | 18,739  | 13,826  |
| 2,4-D, DIMETHYLAMINE<br>SALT                                     | 540,728 | 527,870 | 477,967 | 411,858   | 496,014   | 475,796 | 491,242 | 595,235 | 553,369 | 567,143 | 522,231 |
| 2,4-D, DODECYLAMINE SALT                                         | 0       | 76      | 82      | 1,481     | 0         | 262     | 276     | 0       | 0       | 0       | 0       |
| 2,4-D, HEPTYLAMINE SALT                                          | <1      | 0       | 0       | 29        | 0         | 0       | 0       | 0       | 0       | 0       | 0       |
| 2,4-D, ISOOCTYL ESTER                                            | 5,163   | 35,045  | 29,179  | 14,449    | 5,711     | 16,375  | 6,964   | 9,476   | 7,502   | 6,532   | 7,638   |
| 2,4-D, ISOPROPYL ESTER                                           | 69,081  | 87,492  | 101,141 | 100,837   | 103,938   | 88,849  | 108,908 | 116,840 | 117,870 | 144,377 | 145,749 |
| 2,4-D, N-OLEYL-1,3-<br>PROPYLENEDIAMINE SALT                     | 26      | 0       | 2       | 3         | 0         | 0       | 0       | 0       | 0       | 0       | 0       |
| 2,4-D, PROPYL ESTER                                              | 23,846  | 21,479  | 14,356  | 15,542    | 11,278    | 5,200   | 7,468   | 5,509   | 8,680   | 5,261   | 5,660   |
| 2,4-D, TETRADECYLAMINE<br>SALT                                   | 0       | 76      | 82      | 1,481     | 0         | 262     | 276     | 0       | 0       | 0       | 0       |
| 2,4-D, TRIETHYLAMINE SALT                                        | 131,679 | 46,600  | 7,381   | 2,638     | 1,391     | 1,257   | 688     | 1,035   | 677     | 243     | 815     |
| 2,4-D, TRIISOPROPYLAMINE<br>SALT                                 | 0       | 0       | 0       | 0         | 0         | 0       | 0       | 0       | 0       | 0       | 0       |
| ACROLEIN                                                         | 2,462   | 1,514   | 292     | 3,981     | 873       | 1,409   | 2,206   | 642     | 575     | 73      | 18      |
| ALUMINUM PHOSPHIDE                                               | 80,217  | 535,817 | 74,441  | 1,034,732 | 1,271,647 | 67,422  | 70,367  | 73,869  | 74,762  | 63,289  | 78,533  |


Table 7B (cont.). The reported cumulative acres treated in California with pesticides on DPR's toxic air contaminants list.

| Al                             | 1996    | 1997    | 1998    | 1999    | 2000    | 2001    | 2002    | 2003    | 2004    | 2005    | 2006    |
|--------------------------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| ARSENIC ACID                   | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       |
| ARSENIC PENTOXIDE              | 0       | 0       | 0       | 0       | 709,893 | 56      | 0       | 0       | 48      | 0       | 0       |
| ARSENIC TRIOXIDE               | 0       | 0       | 0       | 0       | 0       | 0       | 1       | <1      | 0       | 1       | 0       |
| CAPTAN                         | 381,989 | 347,631 | 602,684 | 404,731 | 309,989 | 215,969 | 215,412 | 271,140 | 211,028 | 252,040 | 262,912 |
| CAPTAN, OTHER RELATED          | 381,989 | 347,235 | 602,585 | 404,511 | 309,337 | 215,958 | 215,362 | 270,968 | 209,571 | 251,846 | 262,836 |
| CARBARYL                       | 312,058 | 292,721 | 197,664 | 216,991 | 196,464 | 147,612 | 106,616 | 97,811  | 103,261 | 99,086  | 87,749  |
| CHLORINE                       | 0       | 1,764   | 1,329   | 46,611  | 37,220  | 95      | 150     | 650     | 2,137   | 0       | 431     |
| CHROMIC ACID                   | 0       | 0       | 0       | 0       | 709,893 | 56      | 0       | 0       | 0       | 0       | 0       |
| DAZOMET                        | 863     | 1,099   | 3,589   | 243     | 223     | 224     | 136     | 326     | 298     | 113     | 124     |
| DDVP                           | 1,499   | 2,596   | 3,692   | 2,180   | 2,336   | 3,954   | 4,327   | 2,576   | 1,637   | 7,445   | 1,526   |
| ETHYLENE OXIDE                 | 0       | 0       | 194     | 31      | 41      | 0       | 0       | 0       | 0       | 0       | 0       |
| FORMALDEHYDE                   | 234     | 12      | 126     | 123     | 47      |         | 33      | 18      | 23      | 2       | 265     |
| HYDROGEN CHLORIDE              | 1       | 0       | 16      | 0       | 0       | 27      | 590     | 273     | 1       | 17      | 18      |
| LINDANE                        | 25,352  | 36,573  | 32,650  | 20,930  | 14,640  | 13,832  | 8,010   | 8,828   | 9,437   | 557     | 9       |
| MAGNESIUM PHOSPHIDE            | 19      | 26      | 184     | 616,017 | 46      | 0.0     | 7       | 167     | 1       | 23      | 29      |
| MANCOZEB                       | 351,801 | 284,136 | 683,756 | 387,300 | 363,305 | 228,275 | 197,196 | 276,093 | 194,219 | 370,266 | 348,061 |
| MANEB                          | 731,079 | 624,121 | 941,308 | 629,897 | 611,756 | 535,105 | 554,904 | 660,011 | 601,360 | 730,254 | 675,530 |
| META-CRESOL                    | 1,309   | 3,488   | 1,407   | 657     | 3,142   | 517     | 267     | 244     | 288     | 164     | 50      |
| METAM-SODIUM                   | 215,899 | 198,395 | 154,309 | 186,300 | 146,847 | 125,263 | 141,415 | 142,406 | 128,427 | 97,562  | 101,880 |
| METHANOL                       | 0       | 0       | 0       | 0       | 14      | •       | 0       | 0       | 0       | 0       | 0       |
| METHOXYCHLOR                   | 19      | 131     | 194     | 140     | 197     | 88      | 24      | 0       | 44      | 26      | 395     |
| METHOXYCHLOR, OTHER<br>RELATED | 9       | 52      | 5       | 0       | 0       | 0       | 0       | 0       | <1      | 0       | 0       |
| METHYL BROMIDE                 | 96,507  | 113,195 | 90,107  | 102,115 | 75,832  | 60,892  | 53,140  | 55,254  | 57,385  | 45,700  | 50,608  |
| METHYL ISOTHIOCYANATE          | 0       | 0       | 47      | 100     | 0       | 0       | 0       | 0       | 0       | 0       | 0       |
| METHYL PARATHION               | 125,729 | 125,638 | 128,675 | 119,315 | 43,773  | 39,449  | 37,514  | 51,252  | 48,640  | 49,771  | 51,184  |
| NAPHTHALENE                    | 0       | 0       | 0       | 0       | 0       | 0       | 20      | 0       | 0       | 2       | 0       |
| PARA-DICHLOROBENZENE           | 0       | 0       | 10      | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       |
| PARATHION                      | 5,099   | 2,071   | 2,592   | 1,976   | 4,025   | 2,977   | 7,026   | 1,006   | 392     | 717     | 713     |
| PCNB                           | 44,187  | 29,169  | 39,090  | 28,324  | 28,649  | 25,832  | 9,533   | 7,759   | 3,817   | 3,001   | 1,496   |

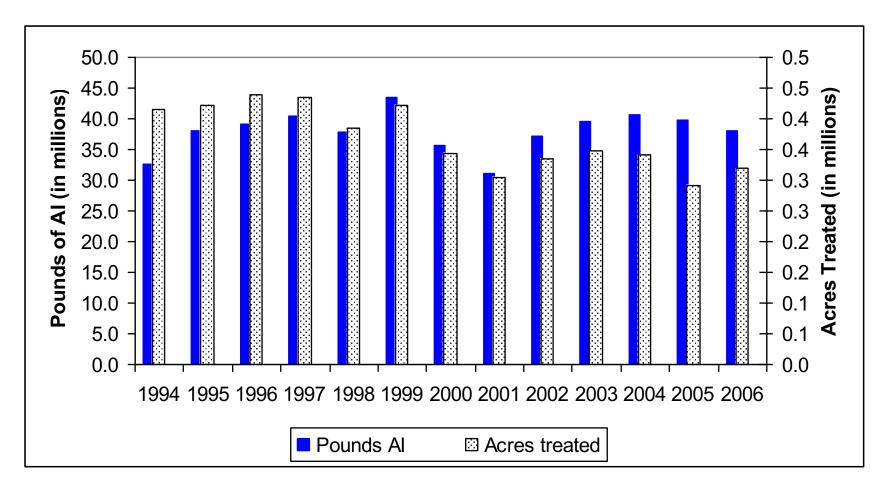
 Table 7B (cont.). The reported cumulative acres treated in California with pesticides on DPR's toxic air contaminants list.

| Al                                    | 1996      |           |           |           |           | 1 1       |           | 2003      |           | 2005      | 2006      |
|---------------------------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| PCP, OTHER RELATED                    | 15        | 4         | 15        | 0         | 59        |           | 0         | 0         | 20        |           | 1         |
| PCP, SODIUM SALT                      | 0         | 0         | 20        | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0         |
| PENTACHLOROPHENOL                     | 15        | 4         | 190       | 0         | 59        | 38        | 0         | 0         | 20        | 3         | 1         |
| PHENOL                                | 718       | 37        | 275       | 459       | 5         | 501       | 0         | 25        | 310       | 239       | 0         |
| PHOSPHINE                             | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 349       | 22        | 23        |
| PHOSPHORUS                            | 69        | 790       | 965       | 5,113     | 2,847     | 252       | 0         | 0         | 0         | 23        | 0         |
| POTASSIUM N-<br>METHYLDITHIOCARBAMATE | 0         | 21        | 50        | 0         | 534       | 2,321     | 9,073     | 12,887    | 10,229    | 19,670    | 27,299    |
| POTASSIUM PERMANGANATE                | 0         | 0         | 20        | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0         |
| PROPOXUR                              | 9         | 73        | 45        | 39        | 26        | 4         | 23        | 1         | 7         | 8         | <1        |
| PROPYLENE OXIDE                       | 0         | <1        | 0         | 573       | 0         | 0         | <1        | 0         | 22        | 185       | 20        |
| S,S,S-TRIBUTYL<br>PHOSPHOROTRITHIOATE | 531,052   | 437,505   | 305,306   | 245,470   | 282,844   | 187,153   | 129,570   | 158,604   | 133,535   | 74,538    | 51,658    |
| SODIUM CYANIDE                        | 3,020     | 84,800    | 53,285    | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0         |
| SODIUM DICHROMATE                     | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0         |
| SODIUM<br>TETRATHIOCARBONATE          | 27,736    | 35,473    | 34,488    | 24,947    | 21,002    | 13,574    | 11,559    | 6,832     | 8,497     | 7,977     | 6,170     |
| SULFURYL FLUORIDE                     | 0         | 12        | 0         | 17        | 4         | 0         | 0         | 50        | 2         | 0         | 78        |
| TRIFLURALIN                           | 1,086,892 | 1,131,033 | 1,083,219 | 1,159,648 | 1,039,472 | 800,893   | 944,407   | 903,654   | 920,545   | 886,258   | 895,172   |
| XYLENE                                | 24,221    | 13,568    | 11,327    | 3,325     | 6,208     | 9,665     | 4,533     | 7,502     | 3,375     | 2,722     | 1,824     |
| ZINC PHOSPHIDE                        | 22,801    |           |           |           |           |           |           |           | 14,150    |           |           |
| Grand Total                           | 5,446,199 | 5,591,485 | 5,839,312 | 6,321,059 | 6,937,041 | 3,374,342 | 3,440,523 | 3,863,476 | 3,535,186 | 3,792,608 | 3,686,696 |

**Figure 5.** Use trends of pesticides on DPR's toxic air contaminants list. These pesticides are the currently registered active ingredients listed in the California Code of Regulations, Title 3, Division 6, Chapter 4, Subchapter 1, Article 1, Section 6860. Reported pounds of active ingredient (AI) applied include both agricultural and reportable non-agricultural applications. The reported cumulative acres treated include primarily agricultural applications. Data are from the Department of Pesticide Regulation's Pesticide Use Reports.



# USE TRENDS OF FUMIGANT PESTICIDES


**Table 8A.** The reported pounds of fumigant pesticides used. Use includes both agricultural and reportable non-agricultural applications. Data are from the Department of Pesticide Regulation's Pesticide Use Reports.

| AI                                               | 1996       | •          |            | •          |            | 2001       | 2002       | 2003       | 2004       | 2005       | 2006       |
|--------------------------------------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| 1,2-DICHLOROPROPANE, 1,3-<br>DICHLOROPROPENE AND |            |            |            |            |            |            |            |            |            |            |            |
| RELATED C3 COMPOUNDS                             | 104        | 12,375     | 243        | 927        | 87         | 110        | 331        | 393        | 22         | 0          | 182        |
| 1,3-DICHLOROPROPENE                              | 1,956,846  | 2,457,690  | 3,011,057  | 3,321,147  | 4,465,422  | 4,141,173  | 5,413,214  | 7,003,782  | 8,945,145  | 9,355,308  | 8,591,883  |
| ALUMINUM PHOSPHIDE                               | 105,291    | 90,585     | 68,919     | 123,633    | 119,776    | 99,856     | 169,218    | 119,512    | 131,303    | 135,751    | 148,735    |
| CARBON TETRACHLORIDE                             | 10         | 3          | 38         | <1         | 111        | 2          | 5          | 1          | <1         | 0          | 0          |
| CHLOROPICRIN                                     | 2,814,318  | 2,781,325  | 3,071,470  | 3,657,582  | 3,799,464  | 4,278,136  | 4,672,412  | 4,928,278  | 5,140,637  | 4,870,792  | 5,018,831  |
| DAZOMET                                          | 12,851     | 15,884     | 15,246     | 12,409     | 10,981     | 44,299     | 45,020     | 34,848     | 58,492     | 48,263     | 34,307     |
| ETHYLENE DIBROMIDE                               | <1         | 1          | 5          | <1         | 147        | 2,593      | <1         | <1         | 3          | 0          | 0          |
| ETHYLENE DICHLORIDE                              | 25         | 8          | 1          | <1         | 3          | 4          | 11         | 0          | 1          | 0          | 0          |
| METAM-SODIUM                                     | 15,501,650 | 15,401,098 | 14,120,788 | 17,273,325 | 13,143,954 | 12,460,997 | 15,116,768 | 14,822,689 | 14,698,228 | 12,991,279 | 11,362,375 |
| METHYL BROMIDE                                   | 16,124,148 | 16,711,308 | 14,314,983 | 15,355,845 | 10,900,339 | 6,625,336  | 7,008,644  | 7,289,389  | 7,105,612  | 6,504,576  | 6,518,683  |
| POTASSIUM N-<br>METHYLDITHIOCARBAMATE            | 0          | 2,283      | 9,143      | 0          | 105,364    | 464,882    | 1,175,168  | 1,911,698  | 851,181    | 1,994,072  | 3,202,884  |
| PROPYLENE OXIDE                                  | 224,495    | 198,559    | 198,595    | 172,556    | 118,381    | 99,727     | 99,674     | 99,396     | 151,484    | 147,324    | 130,016    |
| SODIUM TETRATHIOCARBONATE                        | 543,229    | 799,092    | 900,991    | 688,701    | 596,028    | 375,487    | 352,342    | 212,308    | 259,542    | 330,886    | 171,194    |
| SULFURYL FLUORIDE                                | 1,805,401  | 1,938,835  | 2,173,338  | 2,790,343  | 2,428,345  | 2,585,680  | 3,047,882  | 3,138,687  | 3,270,698  | 3,394,126  | 2,871,378  |
| Grand Total                                      | 39,088,370 | 40,409,047 | 37,884,816 | 43,396,468 | 35,688,402 | 31,178,281 | 37,100,689 | 39,560,982 | 40,612,349 | 39,772,378 | 38,050,468 |

**Table 8B.** The reported cumulative acres treated with fumigant pesticides. Use includes both agricultural and reportable non-agricultural applications. Data are from the Department of Pesticide Regulation's Pesticide Use Reports.

| Al                                               | 1996    | 1997    | 1998    | 1999    | 2000    | 2001    | 2002    | 2003    | 2004    | 2005    | 2006    |
|--------------------------------------------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| 1,2-DICHLOROPROPANE, 1,3-<br>DICHLOROPROPENE AND |         |         |         |         |         |         |         |         |         |         |         |
| RELATED C3 COMPOUNDS                             | 144     | 164     | 70      | 207     | 136     | 370     | 44      | 45      | 9       | 0       | 32      |
| 1,3-DICHLOROPROPENE                              | 17,223  | 22,193  | 27,059  | 29,430  | 33,244  | 30,817  | 42,172  | 48,944  | 56,618  | 51,486  | 48,870  |
| ALUMINUM PHOSPHIDE                               | 80,217  | 64,617  | 74,441  | 76,332  | 64,112  | 67,422  | 70,367  | 73,869  | 74,762  | 63,289  | 78,533  |
| CARBON TETRACHLORIDE                             | 0       | 0       | 23      | 0       | 20      | 0       | 0       | 0       | 0       | 0       | 0       |
| CHLOROPICRIN                                     | 57,903  | 52,413  | 59,694  | 61,323  | 58,132  | 60,083  | 53,786  | 51,791  | 53,737  | 50,272  | 51,018  |
| DAZOMET                                          | 863     | 1,099   | 3,589   | 243     | 223     | 224     | 136     | 326     | 298     | 113     | 124     |
| ETHYLENE DIBROMIDE                               | 0       | 0       | 20      | <1      | 21      | 52      | 0       | 0       | 0       | 0       | 0       |
| ETHYLENE DICHLORIDE                              | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       |
| METAM-SODIUM                                     | 215,899 | 198,395 | 154,309 | 186,300 | 146,847 | 125,263 | 141,415 | 142,406 | 128,427 | 97,562  | 101,880 |
| METHYL BROMIDE                                   | 96,507  | 113,195 | 90,107  | 102,115 | 75,832  | 60,892  | 53,140  | 55,254  | 57,385  | 45,700  | 50,608  |
| POTASSIUM N-<br>METHYLDITHIOCARBAMATE            | 0       | 21      | 50      | 0       | 534     | 2,321   | 9,073   | 12,887  | 10,229  | 19,670  | 27,299  |
| PROPYLENE OXIDE                                  | 0       | <1      | 0       | 573     | 0       | 0       | <1      | 0       | 22      | 185     | 20      |
| SODIUM                                           |         |         |         |         |         |         |         |         |         |         |         |
| TETRATHIOCARBONATE                               | 27,736  | 35,473  | 34,488  | 24,947  | 21,002  | 13,574  | 11,559  | 6,832   | 8,497   | 7,977   | 6,170   |
| SULFURYL FLUORIDE                                | 0       | 12      | 0       | 17      | 4       | 0       | 0       | 50      | 2       | 0       | 78      |
| Grand Total                                      | 496,493 | 487,582 | 443,849 | 481,486 | 400,106 | 361,020 | 381,693 | 392,404 | 389,985 | 336,254 | 364,632 |

**Figure 6.** Use trends of fumigant pesticides. Reported pounds of active ingredient (AI) applied include both agricultural and reportable non-agricultural applications. The reported cumulative acres treated include primarily agricultural applications. Data are from the Department of Pesticide Regulation's Pesticide Use Reports.



#### **USE TRENDS OF OIL PESTICIDES**

**Table 9A.** The reported pounds of oil pesticides. As a broad group, oil pesticides and other petroleum distillates are on U.S. EPA's list of B2 carcinogens or the State's Proposition 65 list of chemicals "known to cause cancer." However, these classifications do not distinguish among oil pesticides that may not qualify as carcinogenic due to their degree of refinement. Many such oil pesticides also serve as alternatives to high-toxicity chemicals. For this reason, oil pesticide data was classified separately in this report. Use includes both agricultural and reportable non-

agricultural applications. Data are from the Department of Pesticide Regulation's Pesticide Use Reports.

| AI                                                              | 1996       | 1997       |            |            |            |            | 2002       | 2003       | 2004       | 2005       | 2006       |
|-----------------------------------------------------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| COAL TAR HYDROCARBONS                                           | 0          | 0          | 0          | 0          | 0          | 50         | <1         | 0          | 0          | 0          | 0          |
| HYDROTREATED PARAFFINIC SOLVENT                                 | 77,886     | 97,382     | 88,353     | 79,480     | 102,361    | 189,538    | 206,552    | 283,768    | 320,019    | 244,114    | 252,092    |
| ISOPARAFFINIC<br>HYDROCARBONS                                   | 36,904     | 39,007     | 81,780     | 75,575     | 65,032     | 45,763     | 22,479     | 23,707     | 30,125     | 31,183     | 18,997     |
| KEROSENE                                                        | 125,830    | 101,373    | 90,108     | 70,398     | 84,564     | 49,037     | 20,973     | 17,144     | 14,243     | 7,983      | 11,366     |
| MINERAL OIL                                                     | 7,015,286  | 7,817,478  | 6,920,065  | 6,015,658  | 5,866,268  | 5,405,244  | 6,934,964  | 8,200,682  | 9,056,464  | 9,186,082  | 11,256,378 |
| MINERAL OIL, PETROLEUM<br>DISTILLATES, SOLVENT<br>REFINED LIGHT | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 169        |
| NAPHTHA, HEAVY AROMATIC                                         | 143        | 83         | 0          | 0          | 0          | 29         | 0          | 2          | 53         | 0          | 0          |
| PETROLEUM DERIVATIVE<br>RESIN                                   | 94         | 15         | 6          | 1          | 3          | 1          | <1         | 1          | 1          | 4          | 5          |
| PETROLEUM DISTILLATES                                           | 1,712,167  | 1,816,628  | 1,625,537  | 2,421,987  | 2,289,723  | 1,730,640  | 1,526,848  | 1,878,407  | 1,597,605  | 2,035,987  | 3,863,753  |
| PETROLEUM DISTILLATES,<br>ALIPHATIC                             | 0          | 0          | 0          | 0          | <1         | 7          | 49,237     | 15,163     | 30,638     | 34,152     | 34,017     |
| PETROLEUM DISTILLATES,<br>AROMATIC                              | 14,630     | 14,376     | 35,085     | 9,925      | 10,610     | 2,851      | 6,182      | 2,916      | 5,486      | 2,092      | 2,136      |
| PETROLEUM DISTILLATES,<br>REFINED                               | 38,444     | 47,929     | 61,294     | 114,467    | 928,119    | 846,418    | 318,728    | 371,411    | 1,023,900  | 779,702    | 1,173,405  |
| PETROLEUM HYDROCARBONS                                          | 165,176    | 87,646     | 24,333     | 7,278      | 8,063      | 3,185      | 1,019      | 985        | 642        | 956        | 1,574      |
| PETROLEUM NAPHTHENIC<br>OILS                                    | 12         | 1          | 9          | 2          | 3          | 91         | 325        | 208        | 24         | 48         | 158        |
| PETROLEUM OIL, PARAFFIN<br>BASED                                | 305,871    | 267,704    | 270,998    | 310,791    | 371,155    | 418,474    | 281,516    | 364,770    | 433,848    | 405,894    | 556,854    |
| PETROLEUM OIL,<br>UNCLASSIFIED                                  | 17,920,454 | 22,700,273 | 20,334,019 | 18,541,147 | 17,998,487 | 13,668,208 | 15,929,777 | 15,527,171 | 15,932,497 | 16,232,606 | 18,194,847 |
| PETROLEUM SULFONATES                                            | 4          | 1          | <1         | <1         | 1          | <1         | <1         | 0          | 0          | 0          | <1         |
| Grand Total                                                     | 27,412,900 | 32,989,896 | 29,531,588 | 27,646,708 | 27,724,387 | 22,359,538 | 25,298,602 | 26,686,335 | 28,445,546 | 28,960,803 | 35,365,750 |

**Table 9B.** The reported cumulative acres treated in California with oil pesticides. (See qualifying comments on U.S. EPA B2 carcinogen and Proposition 65 listing with Table 8A.) Uses include primarily agricultural applications. Data are from the Department of Pesticide Regulation's Pesticide Use Reports.

| Al                                                              | 1996      | 1997      | 1998      | 1999      | 2000      | 2001      | 2002      | 2003      | 2004      | 2005      | 2006      |
|-----------------------------------------------------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| COAL TAR<br>HYDROCARBONS                                        | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0         |
| HYDROTREATED<br>PARAFFINIC SOLVENT                              | 103,410   | 121,606   | 109,419   | 93,111    | 124,688   | 192,297   | 220,789   | 306,243   | 327,022   | 252,863   | 270,374   |
| ISOPARAFFINIC<br>HYDROCARBONS                                   | 79,287    | 72,279    | 164,561   | 139,939   | 134,149   | 92,768    | 53,847    | 56,120    | 67,795    | 55,920    | 39,757    |
| KEROSENE                                                        | 289,469   | 240,080   | 223,822   | 179,961   | 227,734   | 199,672   | 194,210   | 291,162   | 264,266   | 314,821   | 348,050   |
| MINERAL OIL                                                     | 244,044   | 240,507   | 226,710   | 204,895   | 204,621   | 226,195   | 246,310   | 337,986   | 407,046   | 478,286   | 595,506   |
| MINERAL OIL, PETROLEUM<br>DISTILLATES, SOLVENT<br>REFINED LIGHT | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 959       |
| NAPHTHA, HEAVY<br>AROMATIC                                      | 0         | 0         | 0         | 0         | 0         | 11        | 0         | 0         | 0         | 0         | 0         |
| PETROLEUM DERIVATIVE<br>RESIN                                   | 191       | 50        | 13        | 1         | 0         | 0         | 0         | 0         | 0         | 10        | 0         |
| PETROLEUM DISTILLATES                                           | 381,514   | 339,492   | 295,807   | 232,305   | 283,634   | 221,743   | 210,498   | 237,198   | 244,673   | 171,158   | 180,454   |
| PETROLEUM DISTILLATES,<br>ALIPHATIC                             | 0         | 0         | 0         | 0         | 0         | 5,104     | 44,494    | 26,131    | 25,904    | 22,723    | 34,136    |
| PETROLEUM DISTILLATES,<br>AROMATIC                              | 12,324    | 19,003    | 2,153     | 7,088     | 6,299     | 1,900     | 3,935     | 1,808     | 519       | 385       | 658       |
| PETROLEUM DISTILLATES,<br>REFINED                               | 5,145     | 6,146     | 6,162     | 12,495    | 42,145    | 48,446    | 35,413    | 39,830    | 79,589    | 117,570   | 200,567   |
| PETROLEUM<br>HYDROCARBONS                                       | 10,560    | 7,105     | 2,970     | 3,993     | 2,790     | 4,029     | 3,269     | 2,869     | 108       | 430       | 260       |
| PETROLEUM NAPHTHENIC<br>OILS                                    | 73        | 0         | 50        | 37        | 0         | 5,119     | 13,241    | 11,314    | 2,484     | 358       | 11,125    |
| PETROLEUM OIL,<br>PARAFFIN BASED                                | 464,308   | 443,059   | 432,587   | 470,300   | 466,132   | 448,032   | 417,941   | 488,928   | 555,670   | 605,289   | 721,204   |
| PETROLEUM OIL,<br>UNCLASSIFIED                                  | 610,423   | 763,348   | 710,417   | 734,320   | 771,049   | 572,825   | 657,135   | 615,742   | 653,743   | 717,903   | 806,242   |
| PETROLEUM SULFONATES                                            | <1        | <1        | 0         | <1        | 10        | 0         | 0         | 0         | 0         | 0         | 0         |
| Grand Total                                                     | 2,200,748 | 2,252,675 | 2,174,672 | 2,078,446 | 2,263,251 | 2,018,141 | 2,101,083 | 2,415,332 | 2,628,818 | 2,737,716 | 3,209,293 |

Figure 7. Use trends of oil pesticides. As a broad group, oil pesticides and other petroleum distillates are on U.S. EPA's list of B2 carcinogens or the State's Proposition 65 list of chemicals "known to cause cancer." However, these classifications do not distinguish among oil pesticides that may not qualify as carcinogenic due to their degree of refinement. Many such oil pesticides also serve as alternatives to high-toxicity chemicals. For this reason, oil pesticide data was classified separately in this report. Reported pounds of active ingredient (AI) applied include both agricultural and reportable non-agricultural applications. The reported cumulative acres treated include primarily agricultural applications. Data are from the Department of Pesticide Regulation's Pesticide Use Reports.



### **USE TRENDS OF BIOPESTICIDES**

**Table 10A.** The reported pounds of biopesticides applied in California. Biopesticides include microorganisms and naturally occurring compounds, or compounds essentially identical to naturally occurring compounds that are not toxic to the target pest (such as pheromones). Use includes both agricultural and non-agricultural applications. Zero values in early years likely indicate the pesticide was not yet registered for

use. Data are from the Department of Pesticide Regulation's Pesticide Use Reports.

| AI                                      | 1996 |       |       | 1999   | -     |       | 2002  | 2003  | 2004  | 2005  | 2006  |
|-----------------------------------------|------|-------|-------|--------|-------|-------|-------|-------|-------|-------|-------|
| (E)-4-TRIDECEN-1-YL-ACETATE             | 140  | 76    | 65    | 67     | 263   | 182   | 247   | 254   | 131   | 68    | 103   |
| (E)-5-DECENOL                           | 133  | 737   | 176   | 246    | 5     | 2     | 2     | 295   | 5     | <1    | 4     |
| (E)-5-DECENYL ACETATE                   | 638  | 3,508 | 844   | 1,183  | 26    | 9     | 12    | 889   | 23    | <1    | 17    |
| (R,Z)-5-(1-DECENYL) DIHYDRO-2-(3H)-     |      |       |       |        |       |       |       |       |       |       |       |
| FURANONE                                | 0    | 0     | <1    | 0      | <1    | 0     | 0     | 0     | <1    | <1    | 0     |
| (S)-KINOPRENE                           | 137  | 121   | 1,261 | 357    | 245   | 311   | 327   | 418   | 359   | 289   | 201   |
| (Z)-11-HEXADECEN-1-YL ACETATE           | 0    | 0     | 0     | 0      | 0     | 0     | 35    | 10    | 10    | 5     | 6     |
| (Z)-11-HEXADECENAL                      | 0    | 0     | 0     | 0      | 0     | 0     | 35    | 10    | 10    | 5     | 6     |
| (Z)-4-TRIDECEN-1-YL-ACETATE             | 4    | 2     | 2     | 2      | 9     | 6     | 8     | 8     | 4     | 2     | 3     |
| (Z)-9-DODECENYL ACETATE                 | 0    | 0     | 0     | 0      | 0     | 0     | 0     | 0     | 0     | <1    | <1    |
| (Z,E)-7,11-HEXADECADIEN-1-YL            |      |       |       |        |       |       |       |       |       |       |       |
| ACETATE                                 | 2    | 1     | 46    | 229    | 3     | 13    | 2     | 0     | 0     | 0     | 0     |
| (Z,Z)-7,11-HEXADECADIEN-1-YL<br>ACETATE | 2    | 1     | 46    | 242    | 3     | <1    | 3     | 0     | 0     | o     | 0     |
| 1-DECANOL                               | 1    | <1    | <1    | <1     | <1    | <1    | 0     | 0     | 0     | 0     | 0     |
| 1-METHYLCYCLOPROPENE                    | 0    | 0     | 0     | 0      | 0     | <1    | <1    | <1    | <1    | <1    | <1    |
| 1-NAPHTHALENEACETAMIDE                  | 99   | 115   | 283   | 333    | 217   | 213   | 88    | 119   | 113   | 55    | 29    |
| ACETIC ACID                             | 3    | 1     | 2     | 3      | 1     | <1    | <1    | <1    | <1    | <1    | 0     |
| AGROBACTERIUM RADIOBACTER               | 14   | 28    | 20    | 7      | 2     | 1     | 4     | 3     | 2     | <1    | 4     |
| AGROBACTERIUM RADIOBACTER,              |      |       |       |        |       |       |       |       |       |       |       |
| STRAIN K1026                            | 0    | 0     | 0     | 0      | <1    | <1    | 1     | <1    | <1    | <1    | 6     |
| ALLYL ISOTHIOCYANATE                    | 0    | <1    | 0     | 0      | <1    | <1    | <1    | <1    | <1    | <1    | <1    |
| AMINO ETHOXY VINYL GLYCINE              |      |       |       |        |       |       |       |       |       |       |       |
| HYDROCHLORIDE                           | 0    | 0     | 8     | 1      | <1    | 1     | 1     | 0     | 0     | 24    | 696   |
| AMPELOMYCES QUISQUALIS                  | 3    | 9     | 40    | 4      | 4     | 2     | <1    | <1    | <1    | <1    | <1    |
| ASPERGILLUS FLAVUS STRAIN AF36          | 0    | 0     | 0     | 0      | 0     | 0     | 0     | 0     | 0     | <1    | 0     |
| AZADIRACHTIN                            | 816  | 843   | 654   | 16,770 | 1,215 | 1,523 | 1,474 | 1,366 | 2,915 | 1,340 | 2,397 |
| BACILLUS PUMILUS, STRAIN QST 2808       | 0    | 0     | 0     | 0      | 0     | 0     | 0     | <1    | 2     | 3,546 | 5,636 |

*Table 10A* (cont.). The reported pounds of biopesticides applied in California.

| Tuble ToA (cont.). The reported pound                                                                      | - I      |             |             | -           | 1            |             |        |             |        |          |        |
|------------------------------------------------------------------------------------------------------------|----------|-------------|-------------|-------------|--------------|-------------|--------|-------------|--------|----------|--------|
| Al                                                                                                         | 1996     | 1997        | 1998        | 1999        | 2000         | 2001        | 2002   | 2003        | 2004   | 2005     | 2006   |
| BACILLUS SPHAERICUS, SEROTYPE H-<br>5A5B, STRAIN 2362                                                      | 0        | 1,298       | 4,886       | 2,274       | 2,749        | 7,941       | 4,667  | 10,158      | 14,187 | 34,154   | 45,430 |
| BACILLUS SUBTILIS GB03                                                                                     | 0        | <1          | <1          | <1          | <1           | 1           | 4      | 5           | 7      | 15       | 14     |
| BACILLUS THURINGIENSIS (BERLINER)                                                                          | 520      | 182         | 751         | 24          | 76           | 115         | 16     | 11          | 12     | 16       | 35     |
| BACILLUS THURINGIENSIS (BERLINER),<br>SUBSP. AIZAWAI, GC-91 PROTEIN                                        | 6,529    | 7,406       | 4,282       | 3,017       | 4,419        | 3,953       | 3,980  | 5,024       | 4,088  | 11,255   | 9,377  |
| BACILLUS THURINGIENSIS (BERLINER),<br>SUBSP. AIZAWAI, SEROTYPE H-7                                         | 10,182   | 14,210      | 10,854      | 10,427      | 9,067        | 5,511       | 3,889  | 7,548       | 3,014  | 2,335    | 1,752  |
| BACILLUS THURINGIENSIS (BERLINER),<br>SUBSP. ISRAELENSIS, SEROTYPE H-14                                    | 4,615    | 4,459       | 13,180      | 5,038       | 88,039       | 24,711      | 8,266  | 11,376      | 9,311  | 11,927   | 14,394 |
| BACILLUS THURINGIENSIS (BERLINER),<br>SUBSP. KURSTAKI STRAIN SA-12                                         | 0        | 0           | 0           | 0           | 1,562        | 1,510       | 4,962  | 5,754       | 3,510  | 6,884    | 3,397  |
| BACILLUS THURINGIENSIS (BERLINER),<br>SUBSP. KURSTAKI, SEROTYPE 3A,3B                                      | 26,051   | 30,286      | 21,683      | 15,244      | 14,477       | 31,046      | 3,423  | 6,161       | 3,916  | 1,931    | 2,271  |
| BACILLUS THURINGIENSIS (BERLINER),<br>SUBSP. KURSTAKI, STRAIN EG 2348                                      | 3,205    | 1,467       | 5,207       | 2,191       | 2,140        | 2,743       | 1,481  | 222         | 107    | 211      | 281    |
| BACILLUS THURINGIENSIS (BERLINER),<br>SUBSP. KURSTAKI, STRAIN EG2371                                       | 3,468    | 2,752       | 1,633       | 213         | 139          | 58          | 19     | 39          | 2      | 5        | 1      |
| BACILLUS THURINGIENSIS (BERLINER),<br>SUBSP. KURSTAKI, STRAIN SA-11                                        | 8,691    | 11,682      | 9,616       | 8,730       | 9,831        | 11,840      | 13,787 | 12,883      | 14,637 | 41,187   | 49,603 |
| BACILLUS THURINGIENSIS (BERLINER),<br>SUBSP. SAN DIEGO                                                     | 3        | 26          | 8           | 34          | 18           | 8           | 1      | 2           | 1      | <1       | 2      |
| BACILLUS THURINGIENSIS SUBSPECIES<br>KURSTAKI STRAIN BMP 123                                               | 0        | 0           | 6           | 1           | 33           | 79          | 164    | 130         | 10     | 1        | 3      |
| BACILLUS THURINGIENSIS SUBSPECIES<br>KURSTAKI, GENETICALLY ENGINEERED<br>STRAIN EG7841 LEPIDOPTERAN ACTIVE | 0.57     | 45.040      | 40.500      | 40.004      | 40.770       | 0.700       | 681    | 4 500       | 244    | 220      | 2.070  |
| TOXIN BACILLUS THURINGIENSIS VAR. KURSTAKI STRAIN M-200                                                    | 257<br>0 | 15,619<br>0 | 12,522<br>0 | 12,831<br>0 | 16,773<br><1 | 8,739<br><1 | 081    | 1,503<br><1 | 344    | 338<br>0 | 3,872  |
| BACILLUS THURINGIENSIS VAR.<br>KURSTAKI, GENETICALLY ENGINEERED<br>STRAIN EG7826                           | 0        | 0           | 0           | 0           | 6,482        | 14,734      | 439    | 1,527       | 930    | 1,919    | 1,384  |
| BACILLUS THURINGIENSIS, SUBSP.<br>AIZAWAI, STRAIN ABTS-1857                                                | 0        | 0           | 0           | 0           | 0            | 0           | 10,540 | 21,956      | 27,075 | 33,336   |        |

Table 10A (cont.). The reported pounds of biopesticides applied in California.

| 1996   | 1997                                                                                             | 1998                                  | 1999                                                                                                                                                                                                        | 2000                                  | 2001                                  | 2002                                                                                                                                                                                                                                                                                                                                                                                               | 2003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2004                                                                                                                                                                                                                                                                                                                                              | 2005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|--------|--------------------------------------------------------------------------------------------------|---------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|---------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|        |                                                                                                  |                                       |                                                                                                                                                                                                             |                                       |                                       |                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 0      | 0                                                                                                | 0                                     | 3                                                                                                                                                                                                           | 158                                   | 498                                   | 1,322                                                                                                                                                                                                                                                                                                                                                                                              | 562                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 347                                                                                                                                                                                                                                                                                                                                               | 315                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 432                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 0      | 0                                                                                                | 0                                     | 0                                                                                                                                                                                                           | 0                                     | 271                                   | 9,485                                                                                                                                                                                                                                                                                                                                                                                              | 29,326                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 23,001                                                                                                                                                                                                                                                                                                                                            | 41,734                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 59,018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0      | 0                                                                                                | 0                                     | 0                                                                                                                                                                                                           | 0                                     | 3,021                                 | 15,491                                                                                                                                                                                                                                                                                                                                                                                             | 38,034                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 46,754                                                                                                                                                                                                                                                                                                                                            | 57,985                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 53,224                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 6      | 835                                                                                              | 21,037                                | 23,660                                                                                                                                                                                                      | 22,309                                | 17,828                                | 10,655                                                                                                                                                                                                                                                                                                                                                                                             | 7,173                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4,731                                                                                                                                                                                                                                                                                                                                             | 3,185                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6,110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 3.663  | 29.895                                                                                           | 12.634                                | 8.055                                                                                                                                                                                                       | 7.166                                 | 2.211                                 | 258                                                                                                                                                                                                                                                                                                                                                                                                | 54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5                                                                                                                                                                                                                                                                                                                                                 | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1      |                                                                                                  |                                       |                                                                                                                                                                                                             |                                       |                                       |                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 863                                                                                                                                                                                                                                                                                                                                               | 824                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 570                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 414    |                                                                                                  |                                       |                                                                                                                                                                                                             | 0.0                                   | 0.0                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 000                                                                                                                                                                                                                                                                                                                                               | 02.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 0      | 0                                                                                                | 0                                     | 0                                                                                                                                                                                                           | 1                                     | 5                                     | <1                                                                                                                                                                                                                                                                                                                                                                                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4                                                                                                                                                                                                                                                                                                                                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 46     | 2                                                                                                | 17                                    | 104                                                                                                                                                                                                         | 3                                     | 73                                    | 3                                                                                                                                                                                                                                                                                                                                                                                                  | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 49                                                                                                                                                                                                                                                                                                                                                | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1      | 40                                                                                               | 174                                   | 24                                                                                                                                                                                                          | 557                                   | 297                                   | 504                                                                                                                                                                                                                                                                                                                                                                                                | 1,281                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 363                                                                                                                                                                                                                                                                                                                                               | 79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 0      | <1                                                                                               | <1                                    | 6,764                                                                                                                                                                                                       | 10,334                                | 4,704                                 | 806                                                                                                                                                                                                                                                                                                                                                                                                | 238                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 326                                                                                                                                                                                                                                                                                                                                               | 34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 3,227  | 14,316                                                                                           | 55,528                                | 94,591                                                                                                                                                                                                      | 110,342                               | 83,664                                | 301,512                                                                                                                                                                                                                                                                                                                                                                                            | 60,498                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 84,880                                                                                                                                                                                                                                                                                                                                            | 111,921                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 95,146                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0      | 0                                                                                                | 0                                     | 0                                                                                                                                                                                                           | 0                                     | 0                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                                                                                                                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 0      | 0                                                                                                | 0                                     | 0                                                                                                                                                                                                           | 0                                     | 0                                     | 103                                                                                                                                                                                                                                                                                                                                                                                                | 171                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 198                                                                                                                                                                                                                                                                                                                                               | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 0      | 0                                                                                                | <1                                    | 0                                                                                                                                                                                                           | <1                                    | <1                                    | 0                                                                                                                                                                                                                                                                                                                                                                                                  | <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| <1     | <1                                                                                               | <1                                    | <1                                                                                                                                                                                                          | <1                                    | <1                                    | <1                                                                                                                                                                                                                                                                                                                                                                                                 | <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <1                                                                                                                                                                                                                                                                                                                                                | <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| <1     | <1                                                                                               | <1                                    | <1                                                                                                                                                                                                          | <1                                    | <1                                    | <1                                                                                                                                                                                                                                                                                                                                                                                                 | <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <1                                                                                                                                                                                                                                                                                                                                                | <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 253    | 431                                                                                              | 848                                   | 21,029                                                                                                                                                                                                      | 7,090                                 | 6,390                                 | 5,107                                                                                                                                                                                                                                                                                                                                                                                              | 1,802                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1,113                                                                                                                                                                                                                                                                                                                                             | 2,195                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2,126                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 0      | 3                                                                                                | 163                                   | 548                                                                                                                                                                                                         | 397                                   | 65                                    | 122                                                                                                                                                                                                                                                                                                                                                                                                | 132                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 91                                                                                                                                                                                                                                                                                                                                                | 79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 28     | 49                                                                                               | 57                                    | 66                                                                                                                                                                                                          | 92                                    | 73                                    | 61                                                                                                                                                                                                                                                                                                                                                                                                 | 113                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 122                                                                                                                                                                                                                                                                                                                                               | 110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 225                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 31.043 | 44.554                                                                                           | 35.129                                | 28,435                                                                                                                                                                                                      | 17.792                                | 6.442                                 | 2.948                                                                                                                                                                                                                                                                                                                                                                                              | 445                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 114                                                                                                                                                                                                                                                                                                                                               | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|        | 0<br>6<br>3,663<br>1<br>414<br>0<br>46<br>1<br>0<br>3,227<br>0<br>0<br>0<br><1<br><1<br>253<br>0 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0 0 0 0 0 0 0 0 0 0 6 835 21,037 3,663 29,895 12,634 1 573 1,250 414 726 216 0 0 0 0 46 2 17 1 40 174 0 <1 <1 3,227 14,316 55,528 0 0 0 0 0 0 0 0 0 1 <1 <1 <1 <1 <1 <1 <1 <1 <253 431 848 0 3 163 28 49 57 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0 0 0 0 0 0 0 271  0 0 0 0 0 0 3,021  6 835 21,037 23,660 22,309 17,828  3,663 29,895 12,634 8,055 7,166 2,211  1 573 1,250 923 915 678  414 726 216 55 0 0  0 0 0 0 1 5  46 2 17 104 3 73  1 40 174 24 557 297  0 <1 <1 6,764 10,334 4,704  3,227 14,316 55,528 94,591 110,342 83,664  0 0 0 0 0 0 0 0 0  0 0 0 0 0 0 0  0 0 0 0 0 0 0  0 0 0 0 0 0 0 0  1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 | 0 0 0 0 0 0 0 271 9,485  0 0 0 0 0 0 0 3,021 15,491  6 835 21,037 23,660 22,309 17,828 10,655  3,663 29,895 12,634 8,055 7,166 2,211 258  1 573 1,250 923 915 678 1,041  414 726 216 55 0 0 0 0 0 0 0 1 5 <1 46 2 17 104 3 73 3 1 40 174 24 557 297 504 0 <1 <1 <1 6,764 10,334 4,704 806  3,227 14,316 55,528 94,591 110,342 83,664 301,512 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0 0 0 0 0 0 0 0 271 9,485 29,326  0 0 0 0 0 0 0 3,021 15,491 38,034  6 835 21,037 23,660 22,309 17,828 10,655 7,173  3,663 29,895 12,634 8,055 7,166 2,211 258 54  1 573 1,250 923 915 678 1,041 715  414 726 216 55 0 0 0 0 0 0  0 0 0 0 1 5 <1 1  46 2 17 104 3 73 3 5  1 40 174 24 557 297 504 1,281  0 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 | 0 0 0 0 0 0 0 0 0 271 9,485 29,326 23,001  0 0 0 0 0 0 3,021 15,491 38,034 46,754  6 835 21,037 23,660 22,309 17,828 10,655 7,173 4,731  3,663 29,895 12,634 8,055 7,166 2,211 258 54 5 1 573 1,250 923 915 678 1,041 715 863 414 726 216 55 0 0 0 0 0 0 0 0 0 0 1 5 <1 1 4 4 46 2 17 104 3 73 3 5 49 1 40 174 24 557 297 504 1,281 363 0 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <0 <1 <0 <1 <0 <1 <0 <1 <0 <1 <0 <1 <0 <1 <0 <1 <0 <1 <0 <1 <0 <1 <0 <1 <0 <1 <0 <1 <0 <1 <0 <1 <0 <1 <0 <1 <0 <1 <0 <1 <0 <1 <0 <1 <0 <1 <0 <1 <0 <1 <0 <1 <0 <1 <0 <1 <0 <1 <0 <1 <0 <1 <0 <1 <0 <1 <0 <1 <0 <1 <0 <1 <0 <1 <0 <1 <0 <1 <0 <1 <0 <1 <0 <1 <0 <1 <0 <1 <0 <1 <0 <1 <0 <1 <0 <1 <0 <1 <0 <1 <0 <1 <0 <1 <0 <1 <0 <1 <0 <1 <0 <1 <0 <1 <0 <1 <0 <1 <0 <1 <0 <1 <0 <1 <0 <1 <0 <1 <0 <1 <0 <1 <0 <1 <0 <1 <0 <1 <0 <1 <0 <1 <0 <1 <0 <1 <0 <1 <0 <1 <0 <1 <0 <1 <0 <1 <0 <1 <0 <1 <0 <1 <0 <1 <0 <1 <0 <1 <0 <1 <0 <1 <1 <0 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 | 0 0 0 0 0 0 0 0 0 271 9,485 29,326 23,001 41,734  0 0 0 0 0 0 0 3,021 15,491 38,034 46,754 57,985  6 835 21,037 23,660 22,309 17,828 10,655 7,173 4,731 3,185  3,663 29,895 12,634 8,055 7,166 2,211 258 54 5 3  1 573 1,250 923 915 678 1,041 715 863 824  414 726 216 55 0 0 0 0 0 0 0 0 0  0 0 0 0 1 5 <1 1 4 1 4 1  46 2 17 104 3 773 3 5 49 2  1 40 174 24 557 297 504 1,281 363 79  0 <1 <1 6,764 10,334 4,704 806 238 326 34  3,227 14,316 55,528 94,591 110,342 83,664 301,512 60,498 84,880 111,921  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 < |

Table 10A (cont.). The reported pounds of biopesticides applied in California.

| AI                                                                                                | 1996   | 1997   | 1998   | 1999   | 2000   | 2001   | 2002   | 2003   | 2004   | 2005   | 2006   |
|---------------------------------------------------------------------------------------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| ENCAPSULATED DELTA ENDOTOXIN OF<br>BACILLUS THURINGIENSIS VAR. SAN<br>DIEGO IN KILLED PSEUDOMONAS |        |        |        |        |        |        |        |        |        |        |        |
| FLUORESCENS                                                                                       | 13     | 0      | 34     | 1      | 6      | 1      | 6      | 0      | 2      | 1      | 0      |
| ESSENTIAL OILS                                                                                    | 0      | <1     | 11     | <1     | <1     | <1     | <1     | <1     | 1      | <1     | 4      |
| ETHYLENE                                                                                          | 0      | 0      | 1      | 5,073  | 6      | 6      | 3      | 24     | 32     | 0      | 0      |
| EUCALYPTUS OIL                                                                                    | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 50     | <1     |
| EUGENOL                                                                                           | 0      | 0      | 3      | 0      | <1     | 0      | 0      | 0      | 3      | <1     | <1     |
| FARNESOL                                                                                          | 53     | 38     | 30     | 36     | 37     | 15     | 10     | 9      | 7      | 10     | 4      |
| GAMMA AMINOBUTYRIC ACID                                                                           | 0      | 0      | 0      | 0      | 0      | 23     | 3,102  | 6,077  | 8,402  | 8,081  | 4,201  |
| GARLIC                                                                                            | 5,115  | 8,989  | 10,203 | 7,113  | 904    | 1,490  | 667    | 295    | 174    | 203    | 89     |
| GERANIOL                                                                                          | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | <1     |
| GERMAN COCKROACH PHEROMONE                                                                        | 0      | 0      | 0      | 0      | 0      | 0      | <1     | <1     | <1     | <1     | <1     |
| GIBBERELLINS                                                                                      | 21,271 | 23,404 | 23,085 | 19,775 | 20,956 | 19,435 | 24,946 | 20,415 | 20,372 | 23,443 | 22,746 |
| GIBBERELLINS, POTASSIUM SALT                                                                      | <1     | 1      | 1      | 15     | <1     | 1      | <1     | <1     | 1      | <1     | 15     |
| GLIOCLADIUM VIRENS GL-21 (SPORES)                                                                 | 144    | 156    | 104    | 86     | 60     | 314    | 110    | 48     | 30     | 19     | 1      |
| GLUTAMIC ACID                                                                                     | 0      | 0      | 0      | 0      | 0      | 23     | 3,102  | 6,077  | 8,402  | 8,081  | 4,201  |
| HYDROGEN PEROXIDE                                                                                 | 0      | 0      | 1      | 15     | 82     | 1,754  | 2,713  | 2,618  | 2,822  | 5,552  | 17,522 |
| HYDROPRENE                                                                                        | 1,131  | 9,305  | 1,486  | 1,609  | 1,703  | 1,380  | 1,656  | 1,043  | 1,309  | 2,910  | 11,956 |
| IBA                                                                                               | 16     | 16     | 43     | 9      | 12     | 18     | 16     | 13     | 19     | 11     | 31     |
| LAGENIDIUM GIGANTEUM (CALIFORNIA<br>STRAIN)                                                       | <1     | 134    | 859    | 499    | 0      | 1      | 0      | 0      | 58     | <1     | 0      |
| LAURYL ALCOHOL                                                                                    | 85     | 207    | 463    | 7,287  | 941    | 302    | 249    | 256    | 295    | 872    | 386    |
| LINALOOL                                                                                          | 391    | 358    | 631    | 229    | 197    | 173    | 274    | 280    | 174    | 176    | 163    |
| METARHIZIUM ANISOPLIAE, VAR.<br>ANISOPLIAE, STRAIN ESF1                                           | <1     | 3      | 37     | 15     | 18     | 15     | 22     | <1     | <1     | <1     | <1     |
| METHOPRENE (POST 1997 SEE CHEM CODE 5026)                                                         | 3,213  | 29,905 | 3,030  | 10,285 | 14,312 | 2,483  | 5,117  | 7,875  | 8,874  | 9,900  | 6,820  |
| METHYL ANTHRANILATE                                                                               | 6      | 184    | 49     | 57     | 50     | 37     | 85     | 34     | 534    | 151    | 449    |
| METHYL SALICYLATE                                                                                 | 0      | 0      | 0      | 0      | 0      | <1     | 0      | 0      | 0      | 0      | <1     |
| MUSCALURE                                                                                         | 3      | 4      | 2      | 2      | 3      | 2      | 1      | 11     | 10     | 14     | 15     |
| MYRISTYL ALCOHOL                                                                                  | 18     | 42     | 94     | 1,502  | 191    | 62     | 51     | 52     | 60     | 176    | 78     |
| MYROTHECIUM VERRUCARIA, DRIED<br>FERMENTATION SOLIDS & SOLUBLES,<br>STRAIN AARC-0255              | 0      | 1,097  | 8,496  | 18,824 | 20,869 | 45,917 | 36,104 | 47,037 | 39,789 | 27,977 | 25,039 |

Table 10A (cont.). The reported pounds of biopesticides applied in California.

| AI                                      | 1996    | 1997    | 1998      | 1999    | 2000    | 2001    | 2002    | 2003    | 2004    | 2005    | 2006    |
|-----------------------------------------|---------|---------|-----------|---------|---------|---------|---------|---------|---------|---------|---------|
| NAA                                     | 18      | 21      | 240       | 14      | 24      | 10      | 6       | 5       | 9       | 13      | 9       |
| NEROLIDOL                               | 43      | 31      | 24        | 29      | 30      | 12      | 8       | 7       | 6       | 8       | 3       |
| NITROGEN, LIQUIFIED                     | 423,124 | 430,214 | 1,003,749 | 424,897 | 391,469 | 478,466 | 561,505 | 321,182 | 79,369  | 82,298  | 54,887  |
| NONANOIC ACID                           | 16,009  | 14,713  | 11,729    | 13,303  | 12,580  | 14,890  | 11,559  | 7,886   | 7,224   | 8,845   | 11,129  |
| NONANOIC ACID, OTHER RELATED            | 843     | 774     | 617       | 700     | 662     | 784     | 608     | 415     | 380     | 466     | 586     |
| NOSEMA LOCUSTAE SPORES                  | 0       | <1      | <1        | <1      | <1      | <1      | <1      | <1      | <1      | <1      | <1      |
| OIL OF ANISE                            | 0       | 0       | 0         | 0       | 0       | <1      | <1      | <1      | <1      | <1      | <1      |
| OIL OF BERGAMOT                         | 0       | 0       | 0         | 0       | 0       | 0       | 0       | 0       | 0       | 0       | <1      |
| OIL OF CEDARWOOD                        | 0       | 0       | 0         | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       |
| OIL OF CITRONELLA                       | 0       | 13      | 5         | 11      | 1       | 33      | 0       | 10      | 0       | <1      | <1      |
| OIL OF LEMONGRASS                       | 0       | 0       | 0         | 0       | 0       | 0       | 0       | 2       | 0       | <1      | <1      |
| OXYPURINOL                              | 0       | 0       | 0         | 0       | <1      | <1      | 0       | 0       | 0       | <1      | 0       |
| PAECILOMYCES FUMOSOROSEUS               |         |         |           |         |         |         |         |         |         |         |         |
| APOPKA STRAIN 97                        | 0       | 0       | 0         | 0       | 0       | 5       | 0       | 0       | 0       | 0       | 0       |
| PERFUME                                 | 0       | 0       | <1        | <1      | <1      | <1      | <1      | <1      | <1      | <1      | <1      |
| POLY-D-GLUCOSAMINE                      | 0       | 0       | 0         | 0       | 0       | 0       | 0       | 0       | <1      | 0       | 0       |
| POLYHEDRAL OCCLUSION BODIES (OB'S)      |         |         |           |         |         |         |         |         |         |         |         |
| OF THE NUCLEAR POLYHEDROSIS VIRUS       |         |         |           |         |         |         |         |         |         |         |         |
| OF HELICOVERPA ZEA (CORN<br>EARWORM)    | 0       | 0       | 0         | 0       | 0       | 0       | 0       | 4       | 4       |         |         |
| ,                                       | 0       | U       | 05.000    | 00.705  | 100 110 | 0       | 100.070 | 7       | 150.770 | 000.054 | 100.000 |
| POTASSIUM BICARBONATE                   | 0       | 28      | 65,909    |         | ·       | · ·     |         |         | 159,772 |         | 162,299 |
| PROPYLENE GLYCOL                        | 62,599  | 61,414  | 68,506    | 54,833  | 63,611  | 56,899  | 60,567  | 50,356  | 44,235  | 47,765  | 42,329  |
| PSEUDOMONAS FLUORESCENS, STRAIN         |         |         |           |         | 400     | 4 400   |         | 4.0=0   |         | 222     |         |
| A506                                    | 3,044   | 3,639   | 3,660     | 2,084   | 103     | 1,102   | 1,361   | 1,972   | 841     | 896     | 1,004   |
| PSEUDOMONAS SYRINGAE STRAIN ESC-        | 0       | 0       | 0.4       | 0       | 0       | 0       |         | 0       | 00      |         |         |
| 11                                      | 0       | U       | 34        | U       | U       | U       | <1      | 0       | 20      | <1      | <1      |
| PSEUDOMONAS SYRINGAE, STRAIN ESC-<br>10 | 15      | <1      | <1        | 0       | 0       | 0       | 0       | 0       | 0       | 0       | <1      |
| PUTRESCENT WHOLE EGG SOLIDS             | 7       | 15      | 19        | 136     | 112     | 140     | 184     | 186     | 110     | 60      | 67      |
| QST 713 STRAIN OF DRIED BACILLUS        |         |         |           |         |         |         |         |         |         |         |         |
| SUBTILIS                                | 0       | 0       | 0         | 0       | 882     | 7,201   | 18,957  | 17,323  | 16,619  | 14,039  | 17,132  |
| S-METHOPRENE                            | 127     | 1,806   | 2,652     | 409     | 371     | 366     | 867     | 762     | 530     | 1,138   | 1,390   |
| SODIUM BICARBONATE                      | 0       | 0       | 0         | 5       | 22      | 230     | 2,063   | 0       | 126     | 0       | 0       |
| SODIUM LAURYL SULFATE                   | 9       | 6       | 14        | 8       | 2       | 9       | <1      | <1      | 3       | 15      | 272     |
| SOYBEAN OIL                             | 26,167  | 44,702  | 18,578    | 59,695  | 40,963  | 27,651  | 31,726  | 33,006  | 50,301  | 20,587  | 70,398  |

Table 10A (cont.). The reported pounds of biopesticides applied in California.

| Al                                  | 1996    | 1997    | 1998      | 1999    | 2000      | 2001      | 2002      | 2003      | 2004    | 2005      | 2006    |
|-------------------------------------|---------|---------|-----------|---------|-----------|-----------|-----------|-----------|---------|-----------|---------|
| STREPTOMYCES GRISEOVIRIDIS STRAIN   |         |         |           |         |           |           |           |           |         |           |         |
| K61                                 | 1       | 2       | 5         | 2       | 5         | 2         | 1         | 1         | <1      | <1        | 1       |
| STREPTOMYCES LYDICUS WYEC 108       | 0       | 0       | 0         | 0       | 0         | 0         | 0         | 0         | 0       | 0         | <1      |
| SUCROSE OCTANOATE                   | 0       | 0       | 0         | 0       | 0         | 0         | 0         | 0         | 0       | 0         | 2       |
| THYME                               | 0       | 0       | 0         | 0       | 0         | 0         | 0         | 0         | 0       | 0         | 171     |
| TRICHODERMA HARZIANUM RIFAI         |         |         |           |         |           |           |           |           |         |           |         |
| STRAIN KRL-AG2                      | 65      | 39      | 60        | 121     | 125       | 116       | 55        | 43        | 37      | 16        | 24      |
| XANTHINE                            | 0       | 0       | 0         | 0       | <1        | <1        | 0         | 0         | 0       | <1        | 0       |
| Z,E-9,12-TETRADECADIEN-1-YL ACETATE | 0       | 0       | 0         | 0       | 0         | 0         | <1        | 0         | 0       | 0         | 0       |
| Z-11-TETRADECEN-1-YL ACETATE        | 0       | <1      | 18        | 85      | 61        | 9         | 18        | 19        | 14      | 12        | 14      |
| Z-8-DODECENOL                       | 5       | 8       | 10        | 12      | 16        | 13        | 11        | 20        | 22      | 19        | 41      |
| Z-8-DODECENYL ACETATE               | 461     | 818     | 888       | 1,009   | 1,435     | 1,127     | 935       | 1,737     | 1,874   | 1,692     | 3,397   |
| Z-9-TETRADECEN-1-OL                 | 0       | 0       | 0         | 0       | 0         | 0         | <1        | 0         | 0       | 0         | 0       |
| Grand Total                         | 668,192 | 818,342 | 1,440,509 | 986,295 | 1,038,221 | 1,025,787 | 1,356,716 | 1,039,242 | 700,553 | 1,023,681 | 845,638 |

**Table 10B.** The reported cumulative acres treated in California with each biopesticide. Biopesticides includes microorganisms and naturally occurring compounds, or compounds essentially identical to naturally occurring compounds that are not toxic to the target pest (such as pheromones). Use includes primarily agricultural applications. The grand total for acres treated is less than the sum of acres for all active ingredients because some products contain more than one active ingredient. Zero values in early years likely indicate the pesticide was not yet registered for use. Data are from the Department of Pesticide Regulation's Pesticide Use Reports.

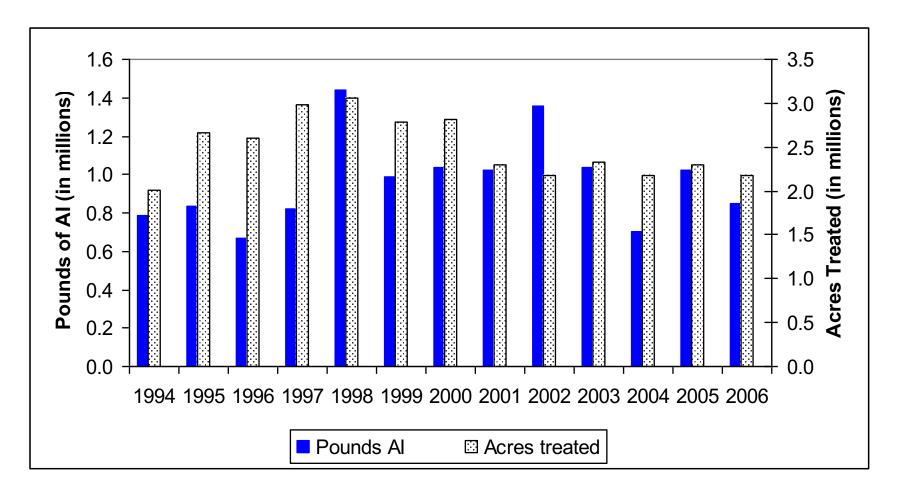
| Al                                    | 1996    | 1997    | 1998   | 1999    | 2000   | 2001   | 2002   | 2003   | 2004   | 2005   | 2006   |
|---------------------------------------|---------|---------|--------|---------|--------|--------|--------|--------|--------|--------|--------|
| (E)-4-TRIDECEN-1-YL-ACETATE           | 5,428   | 3,574   | 2,886  | 3,132   | 12,571 | 9,159  | 11,739 | 10,902 | 5,555  | 3,226  | 4,870  |
| (E)-5-DECENOL                         | 1,434   | 2,187   | 1,414  | 1,034   | 784    | 1,316  | 1,206  | 1,360  | 809    | 71     | 385    |
| (E)-5-DECENYL ACETATE                 | 1,434   | 2,187   | 1,414  | 1,034   | 784    | 1,316  | 1,206  | 1,360  | 809    | 71     | 385    |
| (R,Z)-5-(1-DECENYL) DIHYDRO-2-(3H)-   |         |         |        |         |        |        |        |        |        |        |        |
| FURANONE                              | 0       | 0       | 1      | 0       | 0      | 0      | 0      | 0      | 15     | 0      | 0      |
| (S)-KINOPRENE                         | 341     | 179     | 2,610  | 888     | 600    | 847    | 872    | 755    | 1,864  | 494    | 440    |
| (Z)-11-HEXADECEN-1-YL ACETATE         | 0       | 0       | 0      | 0       | 0      | 0      | 1,053  | 476    | 365    | 164    | 183    |
| (Z)-11-HEXADECENAL                    | 0       | 0       | 0      | 0       | 0      | 0      | 1,053  | 476    | 365    | 164    | 423    |
| (Z)-4-TRIDECEN-1-YL-ACETATE           | 5,428   | 3,574   | 2,886  | 3,132   | 12,571 | 9,159  | 11,739 | 10,902 | 5,555  | 3,226  | 4,870  |
| (Z)-9-DODECENYL ACETATE               | 0       | 0       | 0      | 0       | 0      | 0      | 0      | 0      | 0      | 570    | 96     |
| (Z,E)-7,11-HEXADECADIEN-1-YL ACETATE  | 2,295   | 279     | 82     | 148     | 171    | 128    | 87     | 0      | 0      | 0      | 0      |
| (Z,Z)-7,11-HEXADECADIEN-1-YL ACETATE  | 2,295   | 279     | 82     | 148     | 171    | 128    | 87     | 0      | 0      | 0      | 0      |
| 1-DECANOL                             | 0       | 0       | 0      | 0       | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
| 1-METHYLCYCLOPROPENE                  | 0       | 0       | 0      | 0       | 0      | 3      | <1     | 9      | 4      | 8      | 2      |
| 1-NAPHTHALENEACETAMIDE                | 1,784   | 1,820   | 5,211  | 5,418   | 4,135  | 3,690  | 1,705  | 2,355  | 2,201  | 1,100  | 650    |
| ACETIC ACID                           | 12,119  | 5,776   | 9,038  | 13,693  | 3,618  | 1,182  | 1,146  | 734    | 290    | 60     | 0      |
| AGROBACTERIUM RADIOBACTER             | 6,048   | 1,284   | 5,954  | 1,517   | 1,072  | 514    | 500    | 365    | 493    | 306    | 698    |
| AGROBACTERIUM RADIOBACTER, STRAIN     |         |         |        |         |        |        |        |        |        |        |        |
| K1026                                 | 0       | 0       | 0      | 0       | 4      | 325    | 355    | 716    | 524    | 292    | 335    |
| ALLYL ISOTHIOCYANATE                  | 0       | 2       | 0      | 0       | 0      | 1      | 0      | 36     | 0      | 20     | 0      |
| AMINO ETHOXY VINYL GLYCINE            |         |         |        |         |        |        |        |        |        |        |        |
| HYDROCHLORIDE                         | 0       | 0       | 75     | 142     | 1      | 6      | 10     | 0      | 0      | 229    | 6,392  |
| AMPELOMYCES QUISQUALIS                | 4,566   | 18,628  | 15,039 | 8,363   | 7,156  | 2,193  | 540    | 332    | 697    | 247    | 10     |
| ASPERGILLUS FLAVUS STRAIN AF36        | 0       | 0       | 0      | 0       | 0      | 0      | 0      | 0      | 0      | 258    | 0      |
| AZADIRACHTIN                          | 76,386  | 70,086  | 64,239 | 103,078 | 71,386 | 73,876 | 92,145 | 79,581 | 64,488 | 55,657 | 67,939 |
| BACILLUS PUMILUS, STRAIN QST 2808     | 0       | 0       | 0      | 0       | 0      | 0      | 0      | 1      | 4      | 34,748 | 64,333 |
| BACILLUS SPHAERICUS, SEROTYPE H-5A5B, |         |         |        |         |        |        |        |        |        |        |        |
| STRAIN 2362                           | 0       | 104     | 84     | 39      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
| BACILLUS SUBTILIS GB03                | 0       | 0       | 0      | 0       | 0      | 0      | 0      | 0      | 379    | 23     | 3      |
| BACILLUS THURINGIENSIS (BERLINER)     | 7,377   | 6,109   | 4,437  | 301     | 533    | 644    | 535    | 2      | 441    | 100    | 2,939  |
| BACILLUS THURINGIENSIS (BERLINER),    |         |         |        |         |        |        |        |        |        |        |        |
| SUBSP. AIZAWAI, GC-91 PROTEIN         | 137,786 | 146,197 | 82,473 | 60,262  | 74,287 | 71,531 | 73,992 | 90,283 | 63,504 | 62,244 | 39,077 |

 Table 10B (cont). The reported cumulative acres treated in California with each biopesticide.

| Al                                                                                                               | 1996    | 1997    | 1998    | 1999    | 2000    | 2001    | 2002    | 2003    | 2004    | 2005    | 2006    |
|------------------------------------------------------------------------------------------------------------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| BACILLUS THURINGIENSIS (BERLINER), SUBSP.<br>AIZAWAI, SEROTYPE H-7                                               | 84,793  | 109,951 | 86,430  | 85,564  | 65,943  | 41,378  | 31,487  | 54,037  | 24,160  | 19,190  | 15,784  |
| BACILLUS THURINGIENSIS (BERLINER), SUBSP.<br>ISRAELENSIS, SEROTYPE H-14                                          | 3,357   | 4,289   | 5,242   | 3,221   | 2,435   | 931     | 824     | 2,114   | 1,048   | 3,480   | 543     |
| BACILLUS THURINGIENSIS (BERLINER), SUBSP.<br>KURSTAKI STRAIN SA-12                                               | 0       | 0       | 0       | 0       | 9,474   | 11,773  | 43,337  | 54,540  | 28,485  | 34,533  | 29,505  |
| BACILLUS THURINGIENSIS (BERLINER), SUBSP.<br>KURSTAKI, SEROTYPE 3A,3B                                            | 435,707 | 486,699 | 342,525 | 249,709 | 245,114 | 141,868 | 56,879  | 65,654  | 69,454  | 31,406  | 42,265  |
| BACILLUS THURINGIENSIS (BERLINER), SUBSP.<br>KURSTAKI, STRAIN EG 2348                                            | 23,733  | 11,768  | 22,097  | 14,541  | 14,702  | 21,987  | 10,416  | 1,931   | 737     | 1,625   | 2,913   |
| BACILLUS THURINGIENSIS (BERLINER), SUBSP.<br>KURSTAKI, STRAIN EG2371                                             | 32,471  | 19,739  | 11,015  | 1,684   | 849     | 439     | 134     | 338     | 19      | 54      | 7       |
| BACILLUS THURINGIENSIS (BERLINER), SUBSP.<br>KURSTAKI, STRAIN SA-11                                              | 139,051 | 175,772 | 161,858 | 152,834 | 143,664 | 168,496 | 180,621 | 158,448 | 123,796 | 156,026 | 125,255 |
| BACILLUS THURINGIENSIS (BERLINER), SUBSP. SAN DIEGO                                                              | 4       | 100     | 6       | 20      | 18      | 7       | 2       | 3       | 1       | 0       | 0       |
| BACILLUS THURINGIENSIS SUBSPECIES<br>KURSTAKI STRAIN BMP 123                                                     | 0       | 0       | 87      | 7       | 687     | 1,913   | 6,279   | 3,013   | 268     | 20      | 93      |
| BACILLUS THURINGIENSIS SUBSPECIES<br>KURSTAKI, GENETICALLY ENGINEERED STRAIN<br>EG7841 LEPIDOPTERAN ACTIVE TOXIN | 1,377   | 87,123  | 81,541  | 83,094  | 118,628 | 55,515  | 5,061   | 8,479   | 1,766   | 1,160   | 6,684   |
| BACILLUS THURINGIENSIS VAR. KURSTAKI<br>STRAIN M-200                                                             | 0       | 0       | 0       | 0       | 2       | 0       | 0       | 1       | 0       | 0       | 0       |
| BACILLUS THURINGIENSIS VAR. KURSTAKI,<br>GENETICALLY ENGINEERED STRAIN EG7826                                    | 0       | 0       | 0       | 0       | 30,603  | 76,935  | 2,571   | 8,493   | 6,457   | 8,724   | 3,021   |
| BACILLUS THURINGIENSIS, SUBSP. AIZAWAI,<br>STRAIN ABTS-1857                                                      | 0       | 0       | 0       | 0       | 0       | 0       | 13,835  | 34,164  | 38,718  | 47,071  | 41,456  |
| BACILLUS THURINGIENSIS, SUBSP. AIZAWAI,<br>STRAIN SD-1372, LEPIDOPTERAN ACTIVE<br>TOXIN(S)                       | 0       | 0       | 0       | 32      | 1,561   | 4,718   | 10,897  | 4,989   | 3,465   | 3,025   | 4,235   |
| BACILLUS THURINGIENSIS, SUBSP.<br>ISRAELENSIS, STRAIN AM 65-52                                                   | 0       | 0       | 0       | 0       | 0       | 0       | 5       | 1       | 3       | 313     | 4,809   |
| BACILLUS THURINGIENSIS, SUBSP. KURSTAKI,<br>STRAIN ABTS-351, FERMENTATION SOLIDS AND<br>SOLUBLES                 | 0       | 0       | 0       | 0       | 0       | 6,938   | 33,146  | 75,373  | 94,559  | 109,681 | 100,402 |

 Table 10B (cont). The reported cumulative acres treated in California with each biopesticide.

| Al                                       | 1996   | 1997    | 1998    | 1999     | 2000    | 2001    | 2002    | 2003   | 2004    | 2005    | 2006   |
|------------------------------------------|--------|---------|---------|----------|---------|---------|---------|--------|---------|---------|--------|
| BACILLUS THURINGIENSIS, SUBSP. KURSTAKI, |        | 2 - 1 2 |         | 0.17.100 | 400.00= |         |         |        | 44 = 00 | 00.400  |        |
| STRAIN HD-1                              | 24     | 2,718   | 202,653 | 217,136  | 199,385 | 170,574 | 110,540 | 62,367 | 44,536  | 29,129  | 23,062 |
| BACILLUS THURINGIENSIS, VAR. KURSTAKI    |        |         |         |          |         |         |         |        |         |         |        |
| DELTA ENDOTOXINS CRY 1A(C) AND CRY 1C    |        |         |         |          |         |         |         |        |         |         |        |
| (GENETICALLY ENGINEERED) ENCAPSULATED    | 0.007  | 40.744  | 00.400  | 44.770   | 44.740  | 4 000   | 5.40    | 444    | -       | -4      | 0      |
| IN PSEUDOMONAS FLUORESCENS (KILLED)      | 6,387  | 43,741  | 23,196  | 14,779   | 14,742  | ,-      | 546     | 111    | 1 0 4 0 | <1      | 0 740  |
| BEAUVERIA BASSIANA STRAIN GHA            | 3      | 1,459   | 2,991   | 25,510   | 3,405   | 2,853   | 3,702   | 2,887  | 4,019   | 3,531   | 2,743  |
| CANDIDA OLEOPHILA ISOLATE I-182          | 0      | 0       | 0       | 0        | 0       | 0       | 0       | 0      | 0       | 0       | 0      |
| CANOLA OIL                               | 0      | 0       | 0       | 0        | 2       | 2       | 2       | 2      | <1      | 2       | 5      |
| CAPSICUM OLEORESIN                       | 582    | 443     | 2,762   | 1,799    | 261     | 254     | 149     | 318    | 379     | 71      | 247    |
| CASTOR OIL                               | 0      | <1      | 0       | <1       | 1       | 0       | 0       | 0      | 0       | 0       | 2      |
| CINNAMALDEHYDE                           | 0      | <1      | <1      | 2,418    | 4,139   | 1,534   | 295     | 105    | 137     | 18      | 10     |
| CLARIFIED HYDROPHOBIC EXTRACT OF NEEM    |        |         |         |          |         |         |         |        |         |         |        |
| OIL                                      | 7,526  | 13,537  | 22,092  | 45,247   | 49,142  | 36,602  | 34,157  | 38,357 | 51,009  | 69,051  | 73,105 |
| CODLING MOTH GRANULOSIS VIRUS            | 0      | 0       | 0       | 0        | 0       | 0       | 0       | 0      | 0       | 0       | 1,479  |
| CONIOTHYRIUM MINITANS STRAIN CON/M/91-08 | 0      | 0       | 0       | 0        | 0       | 0       | 935     | 1,301  | 1,781   | 26      | 63     |
| CYTOKININ                                | 0      | 0       | 82      | 0        | 3       | 0       | 0       | 0      | 0       | 0       | 0      |
| DIHYDRO-5-HEPTYL-2(3H)-FURANONE          | 0      | 20      | 0       | 0        | 0       | 0       | 0       | 0      | 0       | 0       | 0      |
| DIHYDRO-5-PENTYL-2(3H)-FURANONE          | 0      | 20      | 0       | 0        | 0       | 0       | 0       | 0      | 0       | 0       | 0      |
| E,E-8,10-DODECADIEN-1-OL                 | 3,811  | 3,696   | 4,300   | 4,514    | 10,407  | 10,381  | 11,841  | 21,255 | 17,383  | 21,896  | 20,728 |
| E-11-TETRADECEN-1-YL ACETATE             | 0      | 13      | 2,171   | 54,460   | 38,834  | 14,063  | 16,870  | 10,335 | 8,836   | 7,351   | 6,637  |
| E-8-DODECENYL ACETATE                    | 6,045  | 9,932   | 11,791  | 23,549   | 22,721  | 33,383  | 33,602  | 39,198 | 41,752  | 33,419  | 37,363 |
| ENCAPSULATED DELTA ENDOTOXIN OF          |        |         |         |          |         |         |         |        |         |         |        |
| BACILLUS THURINGIENSIS VAR. KURSTAKI IN  |        |         |         |          |         |         |         |        |         |         |        |
| KILLED PSEUDOMONAS FLUORESCENS           | 69,222 | 96,678  | 83,238  | 59,905   | 32,372  | 15,188  | 7,529   | 1,160  | 143     | 33      | 9      |
| ENCAPSULATED DELTA ENDOTOXIN OF          |        |         |         |          |         |         |         |        |         |         |        |
| BACILLUS THURINGIENSIS VAR. SAN DIEGO IN |        |         |         |          |         |         |         |        |         |         |        |
| KILLED PSEUDOMONAS FLUORESCENS           | 1      | 0       | 19      | 7        | 6       | 4       | <1      | 0      | 1       | 1       | 0      |
| ESSENTIAL OILS                           | 0      | 0       | 0       | 0        | 6       | 268     | 0       | 0      | 1       | 0       | 0      |
| ETHYLENE                                 | 0      | 0       | 0       | 2        | 0       | 0       | 0       | 0      | 7       | 0       | 0      |
| EUCALYPTUS OIL                           | 0      | 0       | 0       | 0        | 0       | 0       | 0       | 0      | 0       | 150     | 0      |
| EUGENOL                                  | 0      | 0       | 1       | 0        | 0       | 0       | 0       | 0      | 15      | 0       | 0      |
| FARNESOL                                 | 22,113 | 16,837  | 12,543  | 43,212   | 25,673  | 8,495   | 6,584   | 5,451  | 4,294   | 4,369   | 1,246  |
| GAMMA AMINOBUTYRIC ACID                  | 0      | 0       | 0       | 0        | 0       | 320     | 43,682  | 87,153 | 117,477 | 114,189 | 58,586 |
| GARLIC                                   | 6,586  | 24,333  | 12,403  | 7,376    | 4,725   | 2,407   | 2,756   | 828    | 259     | 513     | 363    |


 Table 10B (cont). The reported cumulative acres treated in California with each biopesticide.

| Al                                                                                   | 1996    | 1997    | 1998    | 1999    | 2000    | 2001    | 2002    | 2003    | 2004    | 2005    | 2006    |
|--------------------------------------------------------------------------------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| GERANIOL                                                                             | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       |
| GERMAN COCKROACH PHEROMONE                                                           | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 6       | 0       |
| GIBBERELLINS                                                                         | 416,073 | 455,572 | 487,195 | 439,529 | 464,780 | 387,488 | 423,337 | 431,001 | 414,093 | 462,231 | 456,670 |
| GIBBERELLINS, POTASSIUM SALT                                                         | 101     | 184     | 70      | 1,429   | 8       | 188     | 22      | 59      | 170     | 65      | 348     |
| GLIOCLADIUM VIRENS GL-21 (SPORES)                                                    | 21      | 14      | 29      | 12      | 8       | 768     | 6       | 0       | 0       | 18      | <1      |
| GLUTAMIC ACID                                                                        | 0       | 0       | 0       | 0       | 0       | 320     | 43,682  | 87,153  | 117,477 | 114,189 | 58,586  |
| HYDROGEN PEROXIDE                                                                    | 0       | 0       | 0       | 5       | 21      | 485     | 636     | 802     | 1,057   | 985     | 9,950   |
| HYDROPRENE                                                                           | 0       | 0       | 1       | 1       | <1      | 1       | 0       | 0       | <1      | <1      | 7       |
| IBA                                                                                  | 104     | 410     | 1,319   | 1,236   | 266     | 124     | 244     | 252     | 1,566   | 79      | 27,670  |
| LAGENIDIUM GIGANTEUM (CALIFORNIA STRAIN)                                             | <1      | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 24      | 2       | 0       |
| LAURYL ALCOHOL                                                                       | 1,798   | 2,858   | 2,886   | 2,666   | 8,038   | 6,429   | 4,635   | 4,791   | 6,009   | 6,719   | 5,488   |
| LINALOOL                                                                             | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       |
| METARHIZIUM ANISOPLIAE, VAR. ANISOPLIAE,<br>STRAIN ESF1                              | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       |
| METHOPRENE (POST 1997 SEE CHEM CODE 5026)                                            | 65      | 11      | 23      | 58      | 38      | 50      | 0       | 359     | 1       | 0       | 157     |
| METHYL ANTHRANILATE                                                                  | 0       | 0       | 0       | 0       | 0       | 0       | 81      | 56      | 1,458   | 448     | 1,557   |
| METHYL SALICYLATE                                                                    | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       |
| MUSCALURE                                                                            | 1,439   | 699     | 979     | 292     | 473     | 189     | 121     | 2,283   | 307     | 2,715   | 476     |
| MYRISTYL ALCOHOL                                                                     | 1,798   | 2,858   | 2,886   | 2,666   | 8,038   | 6,429   | 4,635   | 4,791   | 6,009   | 6,719   | 5,488   |
| MYROTHECIUM VERRUCARIA, DRIED<br>FERMENTATION SOLIDS & SOLUBLES, STRAIN<br>AARC-0255 | 0       | 104     | 1,514   | 3,348   | 3,173   | 4,392   | 3,926   | 4,390   | 8,348   | 4,680   | 4,478   |
| NAA                                                                                  | 41      | 364     | 542     | 788     | 172     | 102     | 72      | 75      | 1,096   | 49      | 26,799  |
| NEROLIDOL                                                                            | 22,113  | 16,837  | 12,543  | 43,212  | 25,673  | 8,495   | 6,584   | 5,451   | 4,294   | 4,369   | 1,246   |
| NITROGEN, LIQUIFIED                                                                  | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       |
| NONANOIC ACID                                                                        | 518     | 294     | 645     | 573     | 496     | 495     | 443     | 476     | 1,075   | 675     | 877     |
| NONANOIC ACID, OTHER RELATED                                                         | 518     | 294     | 645     | 573     | 496     | 495     | 443     | 476     | 1,075   | 675     | 877     |
| NOSEMA LOCUSTAE SPORES                                                               | 0       | 0       | 7       | 14      | 2       | 9       | 0       | 35      | 37      | 1       | 0       |
| OIL OF ANISE                                                                         | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       |
| OIL OF BERGAMOT                                                                      | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       |
| OIL OF CEDARWOOD                                                                     | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       |
| OIL OF CITRONELLA                                                                    | 0       | 6       | 80      | 24      | 1       | 0       | 0       | 0       | 0       | 0       | 0       |
| OIL OF LEMONGRASS                                                                    | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 36      | 0       | 20      | 0       |
| OXYPURINOL                                                                           | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       |

 Table 10B (cont). The reported cumulative acres treated in California with each biopesticide.

| AI                                        | 1996      | 1997      | 1998      | 1999      | 2000      | 2001      | 2002      | 2003      | 2004      | 2005      | 2006      |
|-------------------------------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| PAECILOMYCES FUMOSOROSEUS APOPKA          |           |           |           |           |           |           |           |           |           |           |           |
| STRAIN 97                                 | 0         | 0         | 0         | 0         | 0         | 13        | 0         | 0         | 0         | 0         | 0         |
| PERFUME                                   | 0         | 0         | 0         | 0         | 70        | 0         | 0         | 0         | 0         | 0         | 0         |
| POLY-D-GLUCOSAMINE                        | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0         | <1        | 0         | 0         |
| POLYHEDRAL OCCLUSION BODIES (OB'S) OF     |           |           |           |           |           |           |           |           |           |           |           |
| THE NUCLEAR POLYHEDROSIS VIRUS OF         |           |           |           |           |           |           |           |           |           |           |           |
| HELICOVERPA ZEA (CORN EARWORM)            | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 293       | 742       | 0         | 0         |
| POTASSIUM BICARBONATE                     | 0         | 11        | 34,010    | 52,110    | 60,330    | 52,654    | 74,151    | 106,988   | 64,994    | 143,968   | 61,272    |
| PROPYLENE GLYCOL                          | 1,054,935 | 1,116,317 | 1,208,619 | 961,979   | 1,057,786 | 812,714   | 746,000   | 763,898   | 778,321   | 754,665   | 738,308   |
| PSEUDOMONAS FLUORESCENS, STRAIN A506      | 16,951    | 26,617    | 29,656    | 15,760    | 1,443     | 11,668    | 13,126    | 16,945    | 6,559     | 7,176     | 11,929    |
| PSEUDOMONAS SYRINGAE STRAIN ESC-11        | 0         | 0         | 17        | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0         |
| PSEUDOMONAS SYRINGAE, STRAIN ESC-10       | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0         |
| PUTRESCENT WHOLE EGG SOLIDS               | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0         |
| QST 713 STRAIN OF DRIED BACILLUS SUBTILIS | 0         | 0         | 0         | 0         | 2,154     | 15,205    | 40,786    | 54,547    | 58,871    | 56,342    | 64,560    |
| S-METHOPRENE                              | 0         | 0         | 505       | <1        | 567       | 951       | 166       | 21        | 49        | 2,395     | 9,552     |
| SODIUM BICARBONATE                        | 0         | 0         | 0         | 8         | 0         | 0         | 0         | 0         | 100       | 0         | 0         |
| SODIUM LAURYL SULFATE                     | 0         | 0         | 48        | 0         | 16        | 0         | 29        | 0         | 0         | 0         | 0         |
| SOYBEAN OIL                               | 16,839    | 22,476    | 10,427    | 13,609    | 12,837    | 11,254    | 18,627    | 15,359    | 9,870     | 6,344     | 3,675     |
| STREPTOMYCES GRISEOVIRIDIS STRAIN K61     | 20        | 115       | 34        | 27        | 83        | 50        | 17        | 14        | 5         | 20        | 29        |
| STREPTOMYCES LYDICUS WYEC 108             | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 50        |
| SUCROSE OCTANOATE                         | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 4         |
| THYME                                     | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0         |
| TRICHODERMA HARZIANUM RIFAI STRAIN KRL-   |           |           |           |           |           |           |           |           |           |           |           |
| AG2                                       | <1        | 69        | 369       | 456       | 885       | 1,048     | 293       | 466       | 833       | 406       | 285       |
| XANTHINE                                  | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0         |
| Z,E-9,12-TETRADECADIEN-1-YL ACETATE       | 0         | 0         | 0         | 0         | 0         | 0         | 13        | 0         | 0         | 0         | 0         |
| Z-11-TETRADECEN-1-YL ACETATE              | 0         | 13        | 2,171     | 54,460    | 38,834    | 14,063    | 16,870    | 10,335    | 8,836     | 7,351     | 6,637     |
| Z-8-DODECENOL                             | 6,045     | 9,932     | 11,791    | 23,549    | 22,721    | 33,383    | 33,602    | 39,198    | 41,752    | 33,419    | 37,363    |
| Z-8-DODECENYL ACETATE                     | 6,045     | 9,932     | 11,791    | 23,549    | 22,721    | 33,383    | 33,602    | 39,198    | 41,752    | 33,419    | 37,363    |
| Z-9-TETRADECEN-1-OL                       | 0         | 0         | 0         | 0         | 0         | 0         | 13        | 0         | 0         | 0         | 0         |
| Grand Total                               | 2,652,936 | 3,037,120 | 3,109,776 | 2,934,883 | 2,961,477 | 2,412,710 | 2,334,813 | 2,532,799 | 2,410,114 | 2,513,482 | 2,368,347 |

**Figure 8.** Use trends of biopesticides. Biopesticides include microorganisms and naturally occurring compounds, or compounds essentially identical to naturally occurring compounds that are not toxic to the target pest (such as pheromones). Reported pounds of active ingredient (AI) applied include both agricultural and reportable non-agricultural applications. The reported cumulative acres treated include primarily agricultural applications. Data are from the Department of Pesticide Regulation's Pesticide Use Reports.



## V. TRENDS IN PESTICIDE USE IN CERTAIN COMMODITIES

This summary describes possible reasons for changes in pesticide use from 2005 to 2006 for the following commodities: (1) almonds, (2) cotton, (3) wine grapes, (4) table and raisin grapes, (5) alfalfa, (6) processing tomatoes, (7) oranges, (8) head lettuce, (9) rice, (10) peaches and nectarines, (11) strawberries, and (12) carrots. These 12 commodities were chosen because each were treated with more than 5 million pounds of active ingredients (AI) or cumulatively treated on more than 2 million acres. Collectively, this represents 66 percent of all reported pesticide pounds used (74 percent of all pounds used on agricultural fields) and 71 percent of the acres treated in 2006.

Information used to develop this section was drawn from several publications and phone interviews with pest control advisors, growers, University of California Cooperative Extension farm advisors and specialists, researchers, and commodity association representatives. DPR staff analyzed the information, using their extensive knowledge of pesticides, California agriculture, pests, and pest management practices to draw conclusions about possible explanations for changes in pesticide use. However, it is important to note these explanations are based on anecdotal information, not rigorous statistical analyses.

Reported pesticide use in California in 2006 totaled 190 million pounds, a decrease of 6 million pounds from 2005 (-2.9 percent). The AIs with the largest uses by pounds were sulfur, petroleum and mineral oils, metam-sodium, copper compounds, and 1,3-dichloropropene (1,3-D). By pounds, sulfur accounted for 24 percent of all reported pesticide use in 2006 and accounted for most of the decrease in pesticide use from 2005 to 2006. Sulfur use decreased by 15 million pounds (-25 percent) but was still the most highly used pesticide in 2006 by pounds applied. Sulfur is a natural fungicide favored by both conventional and organic farmers and is used mostly to control powdery mildew on grapes. Other pesticides that declined in use include the fumigant metam-sodium (1.6 million pound decrease, -13 percent), the fungicide copper (310,000 pound decrease, -3 percent), and the fumigant 1,3-D (763,000 pound decrease, -8 percent).

In contrast, some pesticide use increased. Non-adjuvant pesticides with the greatest increase in pounds applied were oil (6.4 million pound increase, 22 percent), the fumigant potassium n-methyldithiocarbamate (also called metam-potassium) (1.2 million pound increase, 61 percent), and the herbicide glyphosate (733,000 pound increase, 11 percent). Most oils are low risk pesticides frequently used to control insects and mites. In 2006 oils were used mostly on almonds and oranges. About 40 percent of the total pounds of metam-sodium were on carrots, with processing tomatoes and potato accounting for another 30 percent. Metam-potassium was used mostly on carrots and processing tomatoes and glyphosate on rights of way and almonds.

Different pesticides are used at different rates. In California, most pesticides are applied at rates of around 1 to 2 pounds per acre. However, fumigants are usually applied at rates of hundreds of pounds per acre. Thus, comparing use by pounds will emphasize fumigants. Comparing use among different pesticides using acres treated gives a different picture.

Although pounds of pesticides decreased, acres treated increased by 4 million (3.7 percent). By acres treated, the non-adjuvant pesticides with the greatest use in 2006 were sulfur, glyphosate, oils, copper compounds, and oxyfluorfen. Most of the increase in total acres treated was from increased use of oil, pyraclostrobin, and carfentrazone-ethyl, which are usually considered low

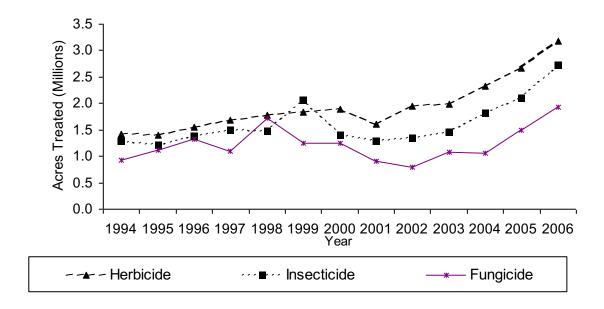
risk. Pyraclostrobin is a fungicide used mostly on almonds and grapes. The herbicide carfentrazone-ethyl was used mostly on almonds and small grains by acres treated. Most of the acres treated with copper are on grapes to control downy mildew and summer bunch rot. The herbicide oxyfluorfen is often applied with glyphosate in almonds.

DPR data analyses have shown that pesticide use varies from year to year depending upon pest problems, weather, acreage and types of crops planted, economics, and other factors. From the end of February through most of April 2006 the weather was cool and rainy so diseases of many crops were worse than in most recent years, except for 2005, when the weather was similar. Use of herbicides and insecticides were generally higher in 2006 than 2005, but pounds of fumigants were less. Prices for most of the 12 crops improved in 2006 and acres planted or harvested for a little over half decreased.

In the following tables, use is given by pounds of AI applied and by acres treated. Acres treated means the cumulative number of acres treated; the acres treated in each application are summed even when the same field is sprayed more than once in a year. (For example, if the same acre is treated three times in a calendar year with an individual AI, it is counted as three acres treated).

### Almonds

Almonds are California's largest tree nut crop in total dollar value and acreage. They are the largest horticultural export from the United States. Approximately 6,000 almond growers produce nearly 100 percent of the commercial domestic supply and more than 75 percent of worldwide production. Nearly 80 countries import California almonds. The United States is by far the largest market for almonds; overseas, Germany and Spain remain the two top markets followed by India, Japan and China, representing 50 percent of all California almond exports. There are three distinct almond growing regions in California, the Sacramento Valley, Central San Joaquin Valley and Southern San Joaquin Valley. Weather conditions and pest pressure can vary greatly from the northern region to the south.


**Table 11A**. Total reported pounds of all active ingredients (AIs), acres treated, acres planted, and prices for almonds each year from 2002 to 2006. Planted acres from 2001 to 2005 are from CDFA 2006; planted acres in 2006 are from NASS, May 2007a; marketing year average prices from 2001 to 2006 from NASS, July 2007b.

|               | 2002       | 2003       | 2004       | 2005       | 2006       |
|---------------|------------|------------|------------|------------|------------|
| Lbs Al        | 11,943,154 | 13,351,612 | 16,200,416 | 17,172,983 | 21,257,929 |
| Acres Treated | 5,522,331  | 6,353,573  | 7,316,371  | 8,898,987  | 11,215,120 |
| Acres Planted | 605,000    | 610,000    | 640,000    | 680,000    | 730,000    |
| Price \$/lb   | \$1.11     | \$1.57     | \$2.21     | \$2.81     | \$1.87     |

**Table 11B**. Percent difference from previous year for reported pounds of all AIs, acres treated, acres planted, and prices for almonds from 2002 to 2006.

|               | 2002 | 2003 | 2004 | 2005 | 2006 |
|---------------|------|------|------|------|------|
| Lbs Al        | 17   | 12   | 21   | 6    | 24   |
| Acres Treated | 8    | 15   | 15   | 22   | 26   |
| Acres Planted | 1    | 1    | 5    | 6    | 7    |
| Price \$/lb   | 22   | 41   | 41   | 27   | -33  |

Figure 9. Acres of almonds treated by all AIs in the major types of pesticides from 1994 to 2006.



**Table 11C**. The non-adjuvant pesticides with the largest change in acres treated of almonds from 2005 to 2006. This table shows acres treated with AI each year from 2002 to 2006, the change in acres treated and percent change from 2005 to 2006.

|                |             |         |         |           |           |           |         | Pct    |
|----------------|-------------|---------|---------|-----------|-----------|-----------|---------|--------|
| Al             | AI TYPE     | 2002    | 2003    | 2004      | 2005      | 2006      | Change  | Change |
| PYRACLOSTROBIN | FUNGICIDE   | 0       | 0       | 74,064    | 266,613   | 473,210   | 206,597 | 77     |
| BOSCALID       | FUNGICIDE   | 0       | 0       | 74,064    | 266,613   | 473,210   | 206,597 | 77     |
| CHLORPYRIFOS   | INSECTICIDE | 92,361  | 120,255 | 153,321   | 155,355   | 293,471   | 138,115 | 89     |
| OIL            | INSECTICIDE | 380,687 | 381,802 | 483,367   | 544,607   | 679,011   | 134,404 | 25     |
| GLYPHOSATE     | HERBICIDE   | 931,671 | 947,935 | 1,034,569 | 1,223,314 | 1,342,067 | 118,753 | 10     |
| CARFENTRAZONE- |             |         |         |           |           |           |         |        |
| ETHYL          | HERBICIDE   | 0       | 0       | 0         | 6,178     | 118,188   | 112,010 | 1,813  |
| ABAMECTIN      | INSECTICIDE | 263,215 | 261,299 | 342,920   | 426,347   | 514,391   | 88,044  | 21     |
| ESFENVALERATE  | INSECTICIDE | 113,672 | 138,497 | 144,053   | 146,702   | 210,652   | 63,950  | 44     |
| OXYFLUORFEN    | HERBICIDE   | 497,148 | 498,675 | 585,731   | 631,310   | 695,139   | 63,829  | 10     |
| PARAQUAT       |             |         |         |           |           |           |         |        |
| DICHLORIDE     | HERBICIDE   | 197,330 | 176,178 | 242,179   | 286,201   | 349,159   | 62,958  | 22     |
| PYRIMETHANIL   | FUNGICIDE   | 0       | 0       | 0         | 0         | 57,070    | 57,070  |        |
| MANEB          | FUNGICIDE   | 38,207  | 47,617  | 37,858    | 18,257    | 73,091    | 54,834  | 300    |
| ZIRAM          | FUNGICIDE   | 81,964  | 101,140 | 61,926    | 104,207   | 155,830   | 51,623  | 50     |
| COPPER         | FUNGICIDE   | 124,113 | 150,598 | 180,138   | 171,807   | 221,200   | 49,392  | 29     |
| PROPARGITE     | INSECTICIDE | 128,836 | 137,299 | 116,550   | 111,887   | 64,687    | -47,200 | -42    |

Pounds of pesticide active ingredients in almonds increased by 24 percent from 2005 to 2006 and acres treated increased by 26 percent. Use of insecticides, fungicides, and herbicides all increased, though fungicide use increased by the greatest percent. Part of the increase in pesticide use can be explained by 7 percent increase in planted acres. In addition, even though almond prices decreased in 2006, the average price returns to growers remains strong, and growers in 2006 anticipated a price increase. Historically, when growers anticipate higher prices they are more inclined to apply pesticides to protect the crop.

Fungicide use increased primarily because wet and cool conditions prevailed in March and April in all growing regions. These conditions resulted in problems with rust, scab, and anthracnose. Some growers reported as many as five applications of fungicide, which is a bit unusual. The most commonly used fungicides and the fungicides with the largest increase in use, were pyraclostrobin and boscalid, which are both present in the same pesticide product. These were used to manage scab and anthracnose. Maneb and captan were used primarily for rust.

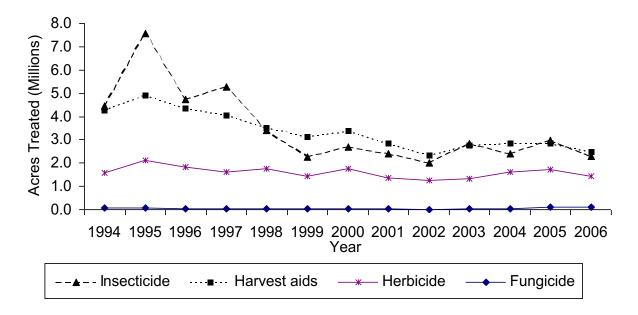
In the Sacramento Valley insect pressure was light in 2006 and insecticide use per acre planted remained nearly constant. Most of the increased insecticide use occurred in the San Joaquin Valley region where San Jose Scale (SJS) and peach twig borer (PTB) got lots of attention with the use of oils, methidathion, and diflubenzuron in the dormant season. Buprofezin also showed an increase. PCAs are realizing that this buprofezin does well in the dormant season for SJS and will use it to a greater extent as a replacement for OPs and carbamates. Diflubenzuron and buprofezin are insect growth regulators and have low toxicity to mammals. A significant infestation of the leaffooted plant bug, particularly in the central and southern region resulted in the increased use of chlorpyrifos. In addition, chlorpyrifos, phosmet and methoxyfenozide are replacing the use of azinphos-methyl. The 89 percent increase in chlorpyrifos is likely due to its use to control SJS, ants and navel orangeworm (NOW), as well as the leaffooted bug. Some growers reported two applications to control NOW at hull split which is a bit unusual. Again, this is likely due in part to the perceived value of almonds in 2006 and growers wanting to protect their investment. However, growers in all regions reported use of winter sanitation to reduce over-wintering populations of NOW. Abamectin showed an increase, however, this could be explained at least partially by the corresponding reduction in use of propargite, both of which are used to control mites.

Due to the long wet spring weeds were a problem resulting in increased use of paraquat dichloride and glyphosate. The use of carfentrazone-ethyl and glufosinate-ammonium showed big increases due to some weed species becoming resistant to glyphosate. The use of pendimethalin continues to increase on non-bearing acreage due to the big increase in almond acreage planted. Tank mixes with glyphosate and oxyfluorfen, or glyphosate and oryzalin have been a standard herbicide mix for years. Growers sometimes will use oxyfluorfen at a low rate to take advantage of its contact action as a boost for glyphosate Also, oryzalin was in short supply for several years. It is now available again and use is increasing.

The use of the fumigant 1,3–D decreased in 2006, and methyl bromide use stayed about the same as 2005. This could be attributed to fewer newly planted orchards in 2006 than in 2005. Newly planted acreage normally requires a one-time preplant fumigation.

### Cotton

Cotton is grown for fiber, oil, and animal feed and is one of the five most widely grown crops in California. Two main kinds of cotton are grown: upland and Pima. Pima cotton acreage has been increasing and upland cotton decreasing. In 2006 the acres of these two kinds of cotton were nearly the same. However, total cotton acres planted decreased by 15 percent from 2005 to 2006. Some upland cotton has also been genetically modified to be tolerant to the herbicide glyphosate (Roundup); acres planted with Roundup Ready cotton decreased by 34 percent from 2005 to 2006. Most cotton is grown in the southern San Joaquin Valley, but a small percentage is grown in Imperial and Riverside counties and several counties in the Sacramento Valley.


**Table 12A.** Total reported pounds of all active ingredients (AIs), acres treated, acres planted, and prices for cotton each year from 2002 to 2006. Planted acres from 2001 to 2005 are from CDFA 2006; planted acres in 2006 are from NASS, June 2007; marketing year average prices from 2001 to 2004 are from NASS, July 2003, July 2004, and July 2006; 2005 and 2006 prices are from NASS, July 2007b.

|                             | 2002      | 2003       | 2004       | 2005       | 2006      |
|-----------------------------|-----------|------------|------------|------------|-----------|
| Lbs Al                      | 7,257,808 | 7,278,615  | 7,171,060  | 7,005,542  | 5,469,481 |
| Acres Treated               | 8,661,444 | 10,529,041 | 10,422,661 | 11,416,289 | 9,655,117 |
| Acres Planted Upland Cotton | 480,000   | 550,000    | 560,000    | 430,000    | 285,000   |
| Acres Planted Pima Cotton   | 210,000   | 150,000    | 215,000    | 230,000    | 275,000   |
| Acres Planted Roundup-Ready | 124,800   | 148,500    | 218,400    | 172,000    | 114,000   |
| Acres Planted Total         | 690,000   | 700,000    | 775,000    | 660,000    | 560,000   |
| Price Upland \$/lbs         | \$0.573   | \$0.745    | \$0.516    | \$0.604    | \$0.572   |
| Price Pima \$/lbs           | \$0.860   | \$1.230    | \$0.882    | \$1.260    | \$1.040   |
| Price All                   | \$0.660   | \$0.849    | \$0.618    | \$0.833    | \$0.802   |

**Table 12B**. Percent difference from previous year for reported pounds of all AIs, acres treated, acres planted, and prices for cotton from 2002 to 2006.

|                             | 2002 | 2003 | 2004 | 2005 | 2006 |
|-----------------------------|------|------|------|------|------|
| Lbs Al                      | -11  | 0    | -1   | -2   | -22  |
| Acres Treated               | -14  | 22   | -1   | 10   | -15  |
| Acres Planted Upland Cotton | -24  | 15   | 2    | -23  | -34  |
| Acres Planted Pima Cotton   | -13  | -29  | 43   | 7    | 20   |
| Acres Planted Roundup-Ready | -27  | 19   | 47   | -21  | -34  |
| Acres Planted Total         | -21  | 1    | 11   | -15  | -15  |
| Price Upland \$/lbs         | 38   | 30   | -31  | 17   | -5   |
| Price Pima \$/lbs           | 0    | 43   | -28  | 43   | -17  |
| Price All                   | 23   | 29   | -27  | 35   | -4   |

Figure 10. Acres of cotton treated by all AIs in the major types of pesticides from 1994 to 2006.



**Table 12C**. The non-adjuvant pesticides with the largest change in acres treated of cotton from 2005 to 2006. This table shows acres treated with AI each year from 2002 to 2006, the change in acres treated and percent change from 2005 to 2006.

|                 |               |         |         |         |         |         |          | Pct    |
|-----------------|---------------|---------|---------|---------|---------|---------|----------|--------|
| Al              | AI TYPE       | 2002    | 2003    | 2004    | 2005    | 2006    | Change C | Change |
| GLYPHOSATE      | HERBICIDE     | 412,541 | 487,283 | 583,138 | 613,245 | 428,185 | -185,060 | -30    |
| CHLORPYRIFOS    | INSECTICIDE   | 245,178 | 313,248 | 223,129 | 390,194 | 256,566 | -133,629 | -34    |
| ACETAMIPRID     | INSECTICIDE   | 47,145  | 295,867 | 348,107 | 372,307 | 284,365 | -87,942  | -24    |
| ETHEPHON        | HARVEST AID   | 428,940 | 476,805 | 572,142 | 563,771 | 482,511 | -81,259  | -14    |
| OXYFLUORFEN     | HERBICIDE     | 125,476 | 170,894 | 174,150 | 231,272 | 158,052 | -73,220  | -32    |
| MEPIQUAT        |               |         |         |         |         |         |          |        |
| CHLORIDE        | HARVEST AID   | 416,462 | 711,204 | 553,951 | 653,612 | 581,541 | -72,070  | -11    |
| ABAMECTIN       | INSECTICIDE   | 273,756 | 325,161 | 337,191 | 320,683 | 249,671 | -71,012  | -22    |
| SODIUM CHLORATE | E HARVEST AID | 382,088 | 382,872 | 341,291 | 243,709 | 174,434 | -69,276  | -28    |
| IMIDACLOPRID    | INSECTICIDE   | 94,686  | 99,787  | 61,010  | 152,302 | 88,571  | -63,731  | -42    |
| INDOXACARB      | INSECTICIDE   | 71,435  | 335,642 | 137,503 | 307,177 | 244,855 | -62,323  | -20    |
| ALDICARB        | INSECTICIDE   | 220,649 | 227,236 | 215,381 | 213,611 | 154,682 | -58,929  | -28    |
| DICOFOL         | INSECTICIDE   | 98,904  | 111,501 | 128,987 | 109,258 | 53,177  | -56,081  | -51    |
| UREA DIHYDROGEI | N             |         |         |         |         |         |          |        |
| SULFATE         | HARVEST AID   | 208,348 | 275,002 | 343,362 | 366,171 | 314,811 | -51,360  | -14    |
| THIAMETHOXAM    | INSECTICIDE   | 204,996 | 224,453 | 181,915 | 222,692 | 173,601 | -49,091  | -22    |
| OXAMYL          | INSECTICIDE   | 57,019  | 75,540  | 93,895  | 138,340 | 92,916  | -45,424  | -33    |

Both cotton acres planted and acres treated decreased by 15 percent from 2005 to 2006. Pounds of AI applied to cotton decreased by 22 percent. Acres treated and pounds of AI of all AI types decreased. Harvest aids decreased by 13 percent in acres treated and 22 percent by pounds of AI; insecticide use decreased by 23 percent in acres and 28 percent in pounds, and herbicide use decreased by 17 percent in acres and 19 percent in pounds. Although acres treated with fungicides decreased by 10 percent, the pounds of fungicides increased by 46 percent; this difference occurs because the increase in fungicides was mostly from seed treatments, which are not reported in acres treated. The decrease in acres treated with harvest aids and herbicides was close to the decrease in acres planted, but insecticide use had a larger decrease. The spring of 2006 was cool and wet, which delayed cotton planting. However, after the slow start the weather warmed and the cotton crop benefited throughout most of the season, except for an exceptionally hot period in late July.

The most used insecticide by acres treated in 2006 was acetamiprid followed by chlorpyrifos, abamectin, and indoxacarb. Use of all of the top 10 insecticides decreased. The only increases were with some lesser-used insecticides. The largest percent decreases were with the miticides dicofol and propargite (-51 percent and -76 percent), but imidacloprid also had a large decrease (-42 percent). Before 2006 the main miticides were abamectin, dicofol, and propargite but in 2006 there was a switch to the newer and lower risk miticides etoxazole and spiromesifen, although abamectin was still the most used miticide.

The decrease in was primarily due to few pest problems in most areas in 2006 and the fewer acres planted. Aphids were present for most of the growing season but not in large enough numbers to cause concern except for a few fields. Whiteflies were present here and there and similarly most fields did not need to be treated. Lygus bugs were only a significant problem in southern San Joaquin Valley. Beet armyworm, western yellow-striped armyworm, and cabbage looper were present in some fields. Thrips were a problem in many areas in the spring.

Acetamiprid, chlorpyrifos, imidacloprid, and endosulfan were used mostly for aphids and whiteflies; indoxacarb and methoxyfenozide were used mostly on beet armyworm and other lepidopteran pests.

The herbicides with most acres treated in 2006 were glyphosate, oxyfluorfen, trifluralin, and pyrithiobac-sodium. Most of the major herbicides (top 15 AIs by acres treated) also decreased except for paraquat dichloride (acres increased by 99 percent), flumioxazin (acres increased 58 percent), carfentrazone-ethyl (acres increased 8 percent), sethoxydim (acres increased 27 percent), and diuron (acres increased 17 percent). Some of these AIs are used both as harvest aids and herbicides; here it is assumed if use occurred between August and November it was used as a harvest aid, otherwise as an herbicide. In the past several years, until 2006, use of glyphosate has been increasing. Glyphosate use decreased in 2006 primarily from a decreased use in March, which was cold and wet, delaying cotton planting.

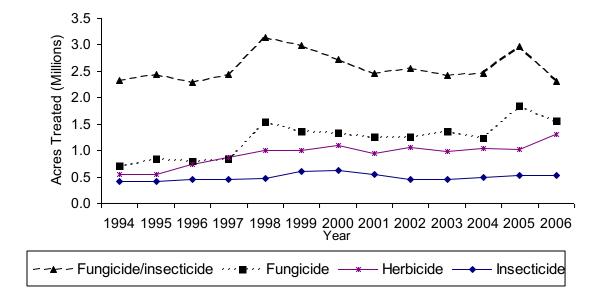
Fungicides are not widely used in cotton, but their use by pounds has been increasing dramatically each year between 2003 and 2006. The main fungicides used in 2006 by pounds were myclobutanil, azoxystrobin, and TCMTB. The increase from 2005 to 2006 was mostly from myclobutanil, which was used primarily as a seed treatment for seedling diseases, and therefore its use in acres treated is low. Azoxystrobin is applied to cotton fields at planting to control seedling diseases. TCMTB, like myclobutanil, is also applied as a seed treatment. Fungicide use increased in 2006 because the cool, wet spring was conducive to seedling diseases.

Growers are increasingly concerned about a new strain of the fungus *Fusarium oxysporum* f. sp. *vasinfectum*. This new strain, known as race 4, is a much more serious disease than the other kinds of Fusarium, which have not caused major problems. Once a field is infected, it is there permanently and cannot be eradicated. Fungicides are not effective against this disease. The only real solution is the development of resistant cotton varieties.

The major harvest aids in 2006 were mepiquat chloride, ethephon, thidiazuron, and diuron. Use of nearly all harvest aids decreased from 2005 to 2006, although use per acres planted of most of the major harvest aids increased slightly. The exceptions were a 10 percent increase of acres treated with pyraflufen-ethyl and a 9 percent increase in cyclanilide. The largest percent decreases were endothall (-41 percent in acres treated) and S,S,S-tributyl phosphorotrithioate (-31 percent).

# Wine grapes

In 2006, about 60 percent of California vineyard acreage produced wine grapes. There are four major wine grape production regions: 1) North Coast (Lake, Mendocino, Napa, Sonoma, and Solano counties); 2) Central Coast (Alameda, Monterey, San Luis Obispo, Santa Barbara, San Benito, Santa Cruz, and Santa Clara counties); 3) Northern San Joaquin Valley (San Joaquin, Calaveras, Amador, Sacramento, Merced, Stanislaus, and Yolo counties); and 4) Southern San Joaquin Valley (Fresno, Kings, Tulare, Kern, and Madera counties). Factors that influence changes in pesticide use on wine grapes include weather, topography, pest pressures (which vary by region), competition from newer pesticide products, application restrictions, efforts by growers to reduce costs, and increasing emphasis on sustainable farming. The pooled figures in this report may not reflect differences in pesticide use patterns in individual production regions.


**Table 13A.** Total reported pounds of all active ingredients (AIs), acres treated, acres planted, and prices for wine grapes each year from 2002 to 2006. Planted acres from 2001 to 2005 are from CDFA 2006; planted acres in 2006 are from NASS, March 2007; marketing year average prices from 2001 to 2006 from NASS, July 2007b.

|               | 2002       | 2003       | 2004       | 2005       | 2006       |
|---------------|------------|------------|------------|------------|------------|
| Lbs Al        | 24,088,800 | 23,426,720 | 23,794,839 | 29,875,627 | 21,380,150 |
| Acres Treated | 6,749,530  | 6,652,676  | 6,572,971  | 8,053,802  | 7,266,619  |
| Acres Planted | 556,000    | 529,000    | 513,000    | 522,000    | 527,000    |
| Price \$/ton  | \$535      | \$530      | \$570      | \$582      | \$582      |

**Table 13B.** Percent difference from previous year for reported pounds of all AIs, acres treated, acres planted, and prices for wine grapes from 2002 to 2006.

|               | 2002 | 2003 | 2004 | 2005 | 2006 |
|---------------|------|------|------|------|------|
| Lbs Al        | 6    | -3   | 2    | 26   | -28  |
| Acres Treated | 3    | -1   | -1   | 23   | -10  |
| Acres Planted | -2   | -5   | -3   | 2    | 1    |
| Price \$/ton  | -10  | -1   | 8    | 2    | 0    |

Figure 11. Acres of wine grapes treated by all AIs in the major types of pesticides from 1994 to 2006.



**Table 13C.** The non-adjuvant pesticides with the largest change in acres treated of wine grapes from 2005 to 2006. This table shows acres treated with AI each year from 2002 to 2006, the change in acres treated and percent change from 2005 to 2006.

|                |               |           |           |           |           |           |          | Pct    |
|----------------|---------------|-----------|-----------|-----------|-----------|-----------|----------|--------|
| Al             | AI TYPE       | 2002      | 2003      | 2004      | 2005      | 2006      | Change   | Change |
|                | FUNGICIDE/    |           |           |           |           |           |          |        |
| SULFUR         | INSECTICIDE : | 2,550,143 | 2,398,324 | 2,441,989 | 2,893,938 | 2,114,037 | -779,901 | -27    |
| OIL            | INSECTICIDE   | 56,395    | 61,789    | 83,408    | 131,159   | 228,846   | 97,688   | 74     |
| GLUFOSINATE-   |               |           |           |           |           |           |          |        |
| AMMONIUM       | HERBICIDE     | 9,012     | 13,108    | 18,816    | 19,720    | 89,518    | 69,798   | 354    |
| TEBUCONAZOLE   | FUNGICIDE     | 144,971   | 128,260   | 120,445   | 167,614   | 98,576    | -69,038  | -41    |
| POTASSIUM      |               |           |           |           |           |           |          |        |
| BICARBONATE    | FUNGICIDE     | 56,345    | 80,316    | 34,376    | 90,240    | 35,307    | -54,933  | -61    |
| TRIFLOXYSTROBI | NFUNGICIDE    | 151,533   | 158,052   | 140,201   | 208,845   | 155,117   | -53,728  | -26    |
| QUINOXYFEN     | FUNGICIDE     | 0         | 0         | 49,248    | 65,605    | 116,372   | 50,767   | 77     |
| COPPER         | FUNGICIDE     | 273,486   | 303,831   | 284,670   | 403,449   | 356,569   | -46,879  | -12    |
| FENARIMOL      | FUNGICIDE     | 76,301    | 94,567    | 54,776    | 101,952   | 55,885    | -46,066  | -45    |
| FLUMIOXAZIN    | HERBICIDE     | 0         | 0         | 0         | 31,324    | 72,447    | 41,124   | 131    |
| PARAQUAT       |               |           |           |           |           |           |          |        |
| DICHLORIDE     | HERBICIDE     | 161,770   | 138,634   | 131,414   | 134,194   | 162,763   | 28,568   | 21     |
| MYCLOBUTANIL   | FUNGICIDE     | 278,048   | 267,895   | 266,726   | 280,241   | 253,956   | -26,285  | -9     |
| CYPRODINIL     | FUNGICIDE     | 41,739    | 51,839    | 33,193    | 66,454    | 41,081    | -25,374  | -38    |
| SIMAZINE       | HERBICIDE     | 118,631   | 103,773   | 115,281   | 103,491   | 126,971   | 23,479   | 23     |
| CARFENTRAZONE  | -             |           |           |           |           |           |          |        |
| ETHYL          | HERBICIDE     | 0         | 0         | 0         | 1,085     | 21,944    | 20,859   | 1,923  |

Total wine grape acres treated with pesticides fell by 10 percent and total pounds of pesticide applied decreased by 28 percent from 2005 to 2006, even though total acres planted increased slightly. This decrease was due chiefly to less application of fungicides and fungicide/insecticides (mainly sulfur). Total acres treated with those two groups of pesticides decreased by 15 and 23 percent, respectively. In contrast, total acres treated increased by 27 percent for herbicides and remained nearly the same for insecticides.

In 2006, an unseasonably warm January and a February with record high temperatures were followed by a long, wet, cool spring. Rain delayed spring field work and caused early bunch rot in some regions. Warm June weather became a record-breaking heat wave in late July. August and September were cool along the central coast, and late September showers fell along the north coast and in the San Joaquin Valley. The harvest was delayed by 2-3 weeks in cooler areas, but largely concluded in October. Rains in northern California in early November caused mildew in some of the remaining crop, but damage was not severe or widespread. Wine grape quality was above average to excellent and the harvest was 17 percent smaller than the record-breaking 2005 crop. Nevertheless, the holdover from last year's bumper crop and winery imports of inexpensive bulk wine kept demand for most wine grape varieties low and the overall price flat. In many cases, wineries accepted only contract tonnages and standards were high. Some wine grape growers sold grapes (especially red varieties other than pinot noir) at low prices for concentrate, or left their fruit to raisin on the vine.

Acres treated with insecticides remained nearly the same from 2005 to 2006 even though there were spreading infestations of vine mealybug (VMB). The major insecticides and miticides applied in 2006 by acres treated were imidacloprid, methoxyfenozide, chlorpyrifos, fenpropathrin, oils, the miticide bifenazate, and *Bacillus thuringiensis* (*Bt*) products.

Imidacloprid and chlorpyrifos were being used in eradication and management programs for VMB in 21 counties. An important trend was a switch from higher to lower risk insecticides. The area treated with acetamiprid, a low risk chemical that can be applied to foliage against sucking insects including VMB, doubled to nearly 24,000 acres. Methoxyfenozide and *Bt* products, also low risk chemicals, control moths. Fenpropathrin is applied against leafhoppers, sharpshooters, and moths. In 2006, acreage treated with oils increased greatly (Table 13C). They have many attractive, broad-spectrum properties and are low-risk. Increasingly mixed with fungicides, oils can replace a surfactant and eradicate mildew growth, as well as suppressing mites and insects such as grape leafhoppers. Bifenazate is a selective alternative to older, higher-risk miticides, which have longer worker re-entry periods.

Use of sulfur and many fungicides decreased from 2005 to 2006 (Table 13C), not because mildew and fungus disease pressure was low in 2006, but because diseases were less severe than in 2005. Growers may be substituting other fungicides for sulfur because of air quality concerns, and many of the alternatives can be applied less frequently and at lower rates. Most materials applied for *Botrytis* infections early in the year also control mildew. However, use of some fungicides increased. Acres treated with lime sulfur in early 2006 against overwintering disease inoculum increased by 67 percent. Total area treated with quinoxyfen for powdery mildew control also rose sharply in 2006. Quinoxyfen is a relatively new fungicide that is being rotated into resistance management programs. Sulfur, copper products, myclobutanil, boscalid, pyraclostrobin, and trifloxystrobin were the most-used fungicides in terms of acres treated.

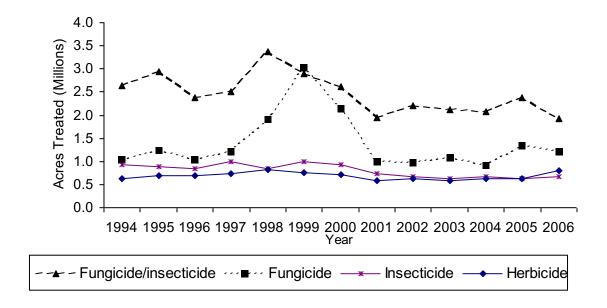
A long, wet spring produced vigorous weed growth in 2005, which led to a larger weed seed bank going into an equally weed-friendly spring 2006. These conditions may have prompted wine grape growers to apply herbicides to more acres in 2006. Herbicides used most in wine grapes by acres treated were glyphosate products, oxyfluorfen, paraquat, and simazine. Acres treated with glyphosate, a broad-spectrum post-emergence herbicide, declined slightly, perhaps because some vineyard weeds have begun showing resistance. Use of several herbicides that control glyphosate-resistant weeds rose significantly during 2006. Simazine application increased in spite of restrictions for ground water protection. The newer broad spectrum pre-emergence herbicide flumioxazin and the post-emergence herbicides paraquat, glufosinate-ammonium, and carfentrazone-ethyl also registered large increases in acres treated (Table 13C).

Fumigants applied for wine grape production rose 15 percent in 2006 in terms of total acres treated. That increase was almost completely due to wider use of aluminum phosphide for rodent control. Two wet springs in a row may have improved rodent habitat, increasing populations. In contrast, there was a significant decline in acres treated with two major soil fumigants: the preplant fumigant 1,3-dichloropropene, which controls nematodes, and sodium tetrathiocarbonate, which is used against nematodes, phylloxera, and root rots.

Plant growth regulators (PGR) are not as widely used in wine grapes as they are in table and raisin grapes. Total area treated with PGR decreased by 13 percent in 2006 to about 7,700 acres.

# Table and raisin grapes

Table and raisin grapes comprised approximately 40 percent of California's total grape acreage in 2006, the rest being wine grapes. These categories shift depending on market conditions, since some grape varieties can be used for more than one purpose. Commercial production of table grapes is centered in the Southern San Joaquin Valley. The Coachella Valley is California's other significant table grape production area. In an average year, the state produces 850,000 to 890,000 tons of table grapes, about 8 percent coming from the Coachella Valley. The Southern San Joaquin Valley region includes Fresno, Madera, Tulare, Kern, and Kings counties; the Coachella Valley region includes Riverside, Imperial, and San Bernardino counties. Thompson Seedless is the leading raisin grape variety, and in most years roughly a third of the raisin grape crop is crushed for wine or concentrate. California produced about 300,000 tons of raisins in 2006. Almost all were from the Southern San Joaquin Valley, although a few raisins are produced in the Northern San Joaquin Valley region (San Joaquin, Calaveras, Amador, Sacramento, Merced, and Stanislaus counties).


**Table 14A.** Total reported pounds of all active ingredients (AIs), acres treated, acres planted, and prices for raisin and table grapes each year from 2002 to 2006. Planted acres from 2001 to 2005 are from CDFA 2006; planted acres in 2006 are from NASS, March 2007; marketing year average prices from 2001 to 2006 from NASS, July 2007b.

|                             | 2002       | 2003       | 2004       | 2005       | 2006       |
|-----------------------------|------------|------------|------------|------------|------------|
| Lbs Al                      | 22,899,333 | 21,510,214 | 21,400,439 | 23,263,479 | 17,768,582 |
| Acres Treated               | 5,978,578  | 5,953,300  | 5,684,603  | 6,597,761  | 6,278,817  |
| <b>Acres Planted Raisin</b> | 252,000    | 260,000    | 248,000    | 246,000    | 240,000    |
| Acres Planted Table         | 97,000     | 93,000     | 92,000     | 93,000     | 93,000     |
| <b>Acres Planted Total</b>  | 349,000    | 353,000    | 340,000    | 339,000    | 333,000    |
| Price Raisin \$/ton         | \$152      | \$170      | \$306      | \$261      | \$283      |
| Price Table \$/ton          | \$616      | \$601      | \$695      | \$442      | \$902      |
| Price All                   | \$281      | \$284      | \$411      | \$311      | \$456      |

**Table 14B.** Percent difference from previous year for reported pounds of all AIs, acres treated, acres planted, and prices for raisin and table grapes from 2002 to 2006.

|                      | 2002 | 2003 | 2004 | 2005 | 2006 |
|----------------------|------|------|------|------|------|
| Lbs Al               | 17   | -6   | -1   | 9    | -24  |
| Acres Treated        | 5    | 0    | -5   | 16   | -5   |
| Acres Planted Raisin | 4    | 3    | -5   | -1   | -2   |
| Acres Planted Table  | -1   | -4   | -1   | 1    | 0    |
| Acres Planted Total  | 3    | 1    | -4   | 0    | -2   |
| Price Raisin \$/ton  | -18  | 12   | 80   | -15  | 8    |
| Price Table \$/ton   | 1    | -2   | 16   | -36  | 104  |
| Price All            | -9   | 1    | 45   | -24  | 47   |

**Figure 12.** Acres of raisin and table grapes treated by all AIs in the major types of pesticides from 1994 to 2006.



**Table 14C.** The non-adjuvant pesticides with the largest change in acres treated of raisin and table grapes from 2005 to 2006. This table shows acres treated with AI each year from 2002 to 2006, the change in acres treated and percent change from 2005 to 2006.

|                 |             |           |           |           |           |           |          | Pct    |
|-----------------|-------------|-----------|-----------|-----------|-----------|-----------|----------|--------|
| Al              | AI TYPE     | 2002      | 2003      | 2004      | 2005      | 2006      | Change   | Change |
|                 | FUNGICIDE/  |           |           |           |           |           |          |        |
| SULFUR          | INSECTICIDE | 2,226,759 | 2,184,408 | 2,100,190 | 2,405,052 | 1,944,399 | -460,654 | -19    |
| GLYPHOSATE      | HERBICIDE   | 254,273   | 250,732   | 241,439   | 249,007   | 289,777   | 40,770   | 16     |
| GLUFOSINATE-    |             |           |           |           |           |           |          |        |
| AMMONIUM        | HERBICIDE   | 987       | 4,334     | 8,719     | 15,610    | 47,166    | 31,556   | 202    |
| TEBUCONAZOLE    | FUNGICIDE   | 99,604    | 115,047   | 118,992   | 130,058   | 99,435    | -30,623  | -24    |
| PARAQUAT        |             |           |           |           |           |           |          |        |
| DICHLORIDE      | FUNGICIDE   | 144,281   | 145,936   | 131,109   | 141,247   | 170,747   | 29,500   | 21     |
| COPPER          | FUNGICIDE   | 277,429   | 343,046   | 259,926   | 348,476   | 377,960   | 29,483   | 8      |
| BOSCALID        | FUNGICIDE   | 0         | 4         | 62,621    | 144,447   | 121,559   | -22,888  | -16    |
| PYRACLOSTROBIN  | FUNGICIDE   | 0         | 4         | 62,621    | 144,439   | 121,556   | -22,883  | -16    |
| SIMAZINE        | HERBICIDE   | 138,485   | 122,159   | 128,252   | 90,997    | 112,317   | 21,320   | 23     |
| TRIFLUMIZOLE    | FUNGICIDE   | 51,500    | 43,789    | 14,470    | 34,816    | 13,650    | -21,166  | -61    |
| CYPRODINIL      | FUNGICIDE   | 65,842    | 61,276    | 37,414    | 68,297    | 48,364    | -19,934  | -29    |
| FLUMIOXAZIN     | HERBICIDE   | 0         | 0         | 0         | 35,247    | 53,825    | 18,578   | 53     |
| POTASSIUM       |             |           |           |           |           |           |          |        |
| BICARBONATE     | FUNGICIDE   | 10,520    | 12,476    | 11,398    | 33,188    | 15,068    | -18,120  | -55    |
| FENARIMOL       | FUNGICIDE   | 72,308    | 74,980    | 64,033    | 62,342    | 44,841    | -17,500  | -28    |
| TRIFLOXYSTROBIN | FUNGICIDE   | 85,033    | 95,491    | 77,027    | 128,721   | 113,851   | -14,870  | -12    |

Two percent fewer acres were planted to table and raisin grapes in 2006, but total acres treated with the major categories of pesticides and total pounds of pesticide active ingredients applied decreased more – by 5 and 24 percent, respectively. The decrease was due to fewer acres being treated with fungicides (-9 percent) and fungicide/insecticides (mostly sulfur, -19 percent). In contrast, total acres treated with herbicides were up 25 percent from 2005, and acres treated with insecticides increased by 6 percent.

In 2006, an unseasonably warm January and a February with record-breaking high temperatures were followed by a long, wet, cool spring. Low temperatures slowed vine development and put the table grape season a few weeks behind normal. Although it rained in late May, the month was generally drier and warmer and canopy growth was good. June hot weather became a record-breaking heat wave in late July, which caused mite outbreaks in some locations, slowed table grape maturity, and had a negative impact on color development in some districts. Some exposed bunches of Red Globe table grapes sustained heat damage. Raisin harvesting was over by November, but the table grape harvest continued into December with vines covered in plastic to protect the fruit from rain. In general, table and raisin grapes were of good size and quality but the harvest was about 20 percent smaller than in 2005. The smaller crop was due at least in part to raisin grape vine removal and the cool, cloudy spring of 2005, which affected the development of flower primordia for the 2006 crop. Thompson Seedless, a primary raisin and table grape variety, is particularly sensitive to fluctuations in light and temperature. Favorable supply and demand conditions led to an increase in price per ton for both table and raisin grapes, while a continuing oversupply of wine grapes depressed winery demand and price. As a result, few table and raisin grapes were sold to vintners, and a high proportion was used for fresh-market fruit or raisins.

Insect pressure was higher in 2006 than in the previous year. The major insecticides applied by acres treated were imidacloprid, cryolite, methoxyfenozide, *Bt* products, and spinosad. Imidacloprid is used against small sucking insects: mealybugs, scales, phylloxera, leafhoppers, sharpshooters, and thrips. It is a newer, relatively expensive alternative to chlorpyrifos for control of vine mealybug, a spreading invasive pest. Acres treated with imidacloprid and chlorpyrifos increased in 2006 by 17 and 29 percent, respectively. Cryolite, methoxyfenozide, and *Bt* all control moths. Spinosad is a newer, low-risk alternative to cryolite that is effective against moths and thrips and can be used in organic production.

Fungicide use decreased from 2005 to 2006, even though disease pressure was high in 2006, primarily because in 2005 disease pressure was even higher. Fungicides most used for table and raisin grape production in 2006 by acres treated were sulfur, copper, myclobutanil, boscalid, pyraclostrobin, trifloxystrobin and tebuconazole. Most of these as well as potassium bicarbonate, triflumizole, and fenarimol provide good to excellent control of powdery mildew, which is the main reason for fungicide use in San Joaquin and Coachella Valley vineyards. Table 14C shows decreases in acres treated with several of those fungicides and cyprodinil, which is effective against *Botrytis* bunch rot. In contrast, the use of copper, most effective against downy mildew and summer bunch rot, increased. Most copper applications were made during early rains and after the May rainstorm, which caused bunch rot problems in susceptible varieties. Acres treated also rose with lime sulfur. It was applied during January through March to control overwintering disease inoculum.

Increased herbicide use reflected the second consecutive long, wet spring. The pressure growers felt in 2005 to cut costs by skimping on weed control may have been reduced in 2006 by the

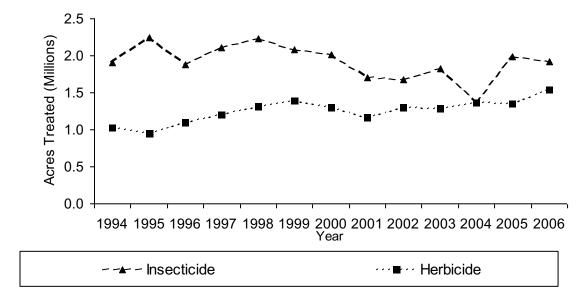
higher commodity prices. The most-used herbicides by acres treated were glyphosate, paraquat, simazine, oxyfluorfen, oryzalin, and flumioxazin. Flumioxazin is a lower-risk alternative to simazine, which is regulated to protect ground water. The use of nearly all herbicides increased; herbicides with the greatest increase in acres treated include glyphosate, glufosinate-ammonium, simazine, and flumioxazin (Table 14C). Glufosinate-ammonium is a post-emergence broadspectrum herbicide that controls some glyphosate-resistant weeds. It and carfentrazone-ethyl, a post-emergence herbicide for broadleaf weeds, were both applied to significant acreage in 2006, their second year of availability.

Total vineyard acres treated with fumigants was almost unchanged in 2006. The two most-used soil fumigants are sodium tetrathiocarbonate for nematodes and phylloxera and the preplant nematicide 1,3-dichloropropene. A total of 34 acres were treated with methyl bromide before planting. Methyl bromide applied for postharvest treatment of grapes for export was reduced by almost two-thirds in 2006, to about 9000 pounds. Use of sulfur dioxide, the major postharvest fungicide applied to table grapes, was down 38 percent by weight. These reductions may reflect the smaller crop and the late harvest.

Raisin and table grape acres treated with plant growth regulators (PGR) and total pounds of PGR applied were about the same as in 2005. The most-used PGR was gibberellin, with over 340,000 acres treated. It is a low-dose compound sprayed between mid-May and early June to reduce fruit set and increase fruit size. About 59,000 acres were treated with ethephon to improve the color of red grapes. Far fewer acres (less than 8,500 for each chemical) were treated with forchlorfenuron, which is used in the same way as gibberellin but is more expensive, and with hydrogen cyanamide, which is sprayed during the dormant period to promote increased and uniform bud break in areas like the Coachella Valley that have warmer winters.

#### Alfalfa

Alfalfa hay is produced for animal feed in California. Most counties produce some alfalfa hay, but half of the state's production comes from Kern, Imperial, Tulare, Merced, and Fresno counties. Harvested alfalfa acres increased in 2006 by 5 percent compared to 2005, but the price per ton of alfalfa hay decreased in 2006 by 15 percent due to financial problems in the dairy industry. The total pounds of pesticide active ingredient applied increased in 2006 by 4 percent compared to 2005. However, the acres treated with pesticides increased in 2006 by 7 percent compared to 2005. The dairy industry is still the biggest market for alfalfa hay production.


**Table 15A.** Total reported pounds of all active ingredients (AIs), acres treated, acres planted, and prices for alfalfa each year from 2002 to 2006. Harvested acres from 2001 to 2005 are from CDFA 2006; harvested acres in 2006 are from NASS, June 2007; marketing year average prices from 2001 to 2004 are from NASS, July 2003, July 2004, July 2005, July 2006; 2005 and 2006 prices from NASS July 2007b.

|                 | 2002      | 2003      | 2004      | 2005      | 2006      |
|-----------------|-----------|-----------|-----------|-----------|-----------|
| Lbs Al          | 3,052,713 | 2,933,189 | 2,668,916 | 2,856,692 | 2,976,922 |
| Acres Treated   | 4,621,099 | 4,867,186 | 4,170,614 | 5,167,935 | 5,524,820 |
| Acres Harvested | 1,160,000 | 1,090,000 | 1,050,000 | 1,000,000 | 1,050,000 |
| Price \$/ton    | \$98.00   | \$93.00   | \$116.00  | \$136.00  | \$116.00  |

**Table 15B**. Percent difference from previous year for reported pounds of all AIs, acres treated, acres planted, and prices for alfalfa from 2002 to 2006.

|                 | 2002 | 2003 | 2004 | 2005 | 2006 |
|-----------------|------|------|------|------|------|
| Lbs Al          | 4    | -4   | -9   | 7    | 4    |
| Acres Treated   | 1    | 5    | -14  | 24   | 7    |
| Acres Harvested | 15   | -6   | -4   | -5   | 5    |
| Price \$/ton    | -18  | -5   | 25   | 17   | -15  |

Figure 13. Acres of alfalfa treated by all AIs in the major types of pesticides from 1994 to 2006.



**Table 15C**. Of the non-adjuvant pesticides, the top 12 AIs by greatest change (either positive or negative) in acres treated from 2005 to 2006; shown are acres treated of each AI year from 2002 to 2006 and change from 2005 to 2006.

|             |                                                                                                                                                               |                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Pct                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| AI TYPE     | 2002                                                                                                                                                          | 2003                                                                                                                                                                                                                                                           | 2004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Change                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Change                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| INSECTICIDE | 96,735                                                                                                                                                        | 253,988                                                                                                                                                                                                                                                        | 122,368                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 336,866                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 479,896                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 143,030                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| INSECTICIDE | 401,531                                                                                                                                                       | 540,581                                                                                                                                                                                                                                                        | 378,147                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 547,013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 441,757                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -105,257                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| INSECTICIDE | 86,611                                                                                                                                                        | 137,236                                                                                                                                                                                                                                                        | 48,062                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 135,197                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 78,910                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -56,287                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|             |                                                                                                                                                               |                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| HERBICIDE   | 12,631                                                                                                                                                        | 6,749                                                                                                                                                                                                                                                          | 9,947                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 54,352                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 98,301                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 43,949                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|             |                                                                                                                                                               |                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| HERBICIDE   | 192,568                                                                                                                                                       | 221,728                                                                                                                                                                                                                                                        | 258,297                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 216,114                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 250,727                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 34,613                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| HERBICIDE   | 15,573                                                                                                                                                        | 20,609                                                                                                                                                                                                                                                         | 17,292                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 19,930                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 51,590                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 31,660                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 159                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| HERBICIDE   | 104,000                                                                                                                                                       | 51,462                                                                                                                                                                                                                                                         | 64,304                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 34,850                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3,636                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -31,214                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| HERBICIDE   | 175,347                                                                                                                                                       | 197,645                                                                                                                                                                                                                                                        | 204,643                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 157,109                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 185,468                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 28,360                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| HERBICIDE   | 120,833                                                                                                                                                       | 154,445                                                                                                                                                                                                                                                        | 159,010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 133,672                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 159,800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 26,127                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| HERBICIDE   | 83,210                                                                                                                                                        | 64,183                                                                                                                                                                                                                                                         | 71,192                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 87,365                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 109,225                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 21,860                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|             |                                                                                                                                                               |                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| HERBICIDE   | 34,555                                                                                                                                                        | 31,037                                                                                                                                                                                                                                                         | 50,436                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 63,515                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 84,501                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 20,987                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|             |                                                                                                                                                               |                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| HERBICIDE   | 33,831                                                                                                                                                        | 58,935                                                                                                                                                                                                                                                         | 71,896                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 97,810                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 118,573                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 20,763                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| INSECTICIDE | 92,465                                                                                                                                                        | 78,453                                                                                                                                                                                                                                                         | 46,532                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 53,049                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 34,469                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -18,579                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| HERBICIDE   | 35,577                                                                                                                                                        | 38,184                                                                                                                                                                                                                                                         | 40,335                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 47,174                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 29,707                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -17,467                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| HERBICIDE   | 53,681                                                                                                                                                        | 25,827                                                                                                                                                                                                                                                         | 29,332                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 37,151                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 20,699                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -16,451                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|             | INSECTICIDE INSECTICIDE INSECTICIDE INSECTICIDE HERBICIDE | INSECTICIDE 96,735 INSECTICIDE 401,531 INSECTICIDE 86,611  HERBICIDE 12,631  HERBICIDE 192,568 HERBICIDE 15,573 HERBICIDE 104,000 HERBICIDE 175,347 HERBICIDE 120,833 HERBICIDE 83,210  HERBICIDE 34,555  HERBICIDE 33,831 INSECTICIDE 92,465 HERBICIDE 35,577 | INSECTICIDE         96,735         253,988           INSECTICIDE         401,531         540,581           INSECTICIDE         86,611         137,236           HERBICIDE         12,631         6,749           HERBICIDE         192,568         221,728           HERBICIDE         15,573         20,609           HERBICIDE         104,000         51,462           HERBICIDE         175,347         197,645           HERBICIDE         120,833         154,445           HERBICIDE         83,210         64,183           HERBICIDE         34,555         31,037           HERBICIDE         33,831         58,935           INSECTICIDE         92,465         78,453           HERBICIDE         35,577         38,184 | INSECTICIDE         96,735         253,988         122,368           INSECTICIDE         401,531         540,581         378,147           INSECTICIDE         86,611         137,236         48,062           HERBICIDE         12,631         6,749         9,947           HERBICIDE         192,568         221,728         258,297           HERBICIDE         15,573         20,609         17,292           HERBICIDE         104,000         51,462         64,304           HERBICIDE         175,347         197,645         204,643           HERBICIDE         120,833         154,445         159,010           HERBICIDE         83,210         64,183         71,192           HERBICIDE         34,555         31,037         50,436           HERBICIDE         33,831         58,935         71,896           INSECTICIDE         92,465         78,453         46,532           HERBICIDE         35,577         38,184         40,335 | INSECTICIDE         96,735         253,988         122,368         336,866           INSECTICIDE         401,531         540,581         378,147         547,013           INSECTICIDE         86,611         137,236         48,062         135,197           HERBICIDE         12,631         6,749         9,947         54,352           HERBICIDE         192,568         221,728         258,297         216,114           HERBICIDE         15,573         20,609         17,292         19,930           HERBICIDE         104,000         51,462         64,304         34,850           HERBICIDE         175,347         197,645         204,643         157,109           HERBICIDE         120,833         154,445         159,010         133,672           HERBICIDE         83,210         64,183         71,192         87,365           HERBICIDE         34,555         31,037         50,436         63,515           HERBICIDE         33,831         58,935         71,896         97,810           INSECTICIDE         92,465         78,453         46,532         53,049           HERBICIDE         35,577         38,184         40,335         47,174 | INSECTICIDE 96,735 253,988 122,368 336,866 479,896 INSECTICIDE 401,531 540,581 378,147 547,013 441,757 INSECTICIDE 86,611 137,236 48,062 135,197 78,910 HERBICIDE 12,631 6,749 9,947 54,352 98,301 HERBICIDE 15,573 20,609 17,292 19,930 51,590 HERBICIDE 104,000 51,462 64,304 34,850 3,636 HERBICIDE 175,347 197,645 204,643 157,109 185,468 HERBICIDE 120,833 154,445 159,010 133,672 159,800 HERBICIDE 83,210 64,183 71,192 87,365 109,225 HERBICIDE 33,831 58,935 71,896 97,810 118,573 INSECTICIDE 92,465 78,453 46,532 53,049 34,469 HERBICIDE 35,577 38,184 40,335 47,174 29,707 | INSECTICIDE 96,735 253,988 122,368 336,866 479,896 143,030 INSECTICIDE 401,531 540,581 378,147 547,013 441,757 -105,257 INSECTICIDE 86,611 137,236 48,062 135,197 78,910 -56,287 HERBICIDE 12,631 6,749 9,947 54,352 98,301 43,949 HERBICIDE 192,568 221,728 258,297 216,114 250,727 34,613 HERBICIDE 15,573 20,609 17,292 19,930 51,590 31,660 HERBICIDE 104,000 51,462 64,304 34,850 3,636 -31,214 HERBICIDE 175,347 197,645 204,643 157,109 185,468 28,360 HERBICIDE 120,833 154,445 159,010 133,672 159,800 26,127 HERBICIDE 83,210 64,183 71,192 87,365 109,225 21,860 HERBICIDE 34,555 31,037 50,436 63,515 84,501 20,987 HERBICIDE 33,831 58,935 71,896 97,810 118,573 20,763 INSECTICIDE 92,465 78,453 46,532 53,049 34,469 -18,579 HERBICIDE 35,577 38,184 40,335 47,174 29,707 -17,467 |

Statewide, insecticide use decreased by 10 percent in pounds of AI and by 3 percent in acres treated in 2006 when compared to 2005. This decrease was accompanied by the 5 percent increase of acres harvested. The decrease in acres treated with insecticides was mainly associated with the decreased uses of chlorpyrifos (-19 percent), methomyl (-42 percent), and carbofuran (-35 percent). The decrease in pounds of insecticides was mainly associated with similar active ingredients. Indoxacarb, on the other hand, showed an increase in acres treated by 42 percent in 2006 when compared to 2005. Other insecticides seem to be stable both in pounds and acres treated from 2005 to 2006. The reasons for the statewide decrease for insecticide use in pounds and acres treated may be due to less insect pressure of western yellow striped armyworm, beet armyworm, alfalfa caterpillar, and Egyptian alfalfa weevil in 2006 vs. 2005.

The decrease in chlorpyrifos and methomyl pounds and acres treated was mainly in the Sacramento and San Joaquin Valleys. The decrease in carbofuran was mainly in the Sacramento, San Joaquin, and Imperial Valleys. In contrast, indoxacarb use increased in the San Joaquin Valley. Indoxacarb is designated by the EPA as a "reduced-risk" pesticide on alfalfa and is considered an organophosphate (OP) replacement.

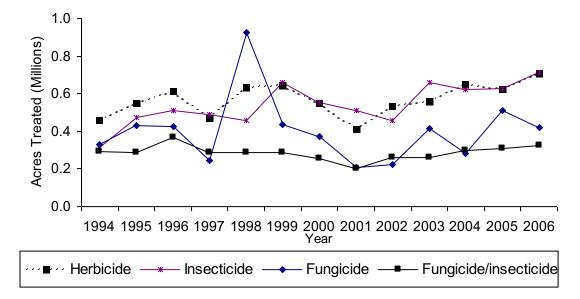
Statewide, herbicide use in pounds and acres treated increased by 10 percent and 15 percent respectively, in 2006 when compared to the use in 2005. This increase may be due to increased weed pressure from the wet spring. Use of most of the top 20 high use herbicides increased, except for sethoxydim, EPTC, and 2,4-DB acid. The increased use of paraquat dichloride may be a supplement to diquat dibromide, a desiccant used in seed production. Seed growers desiccate seed fields prior to harvest. In 2006, seed growers got the registration for a tank mix of paraquat dichloride and diquat dibromide, which the growers used with great success, and only one application was necessary in most situations.

The increase of the herbicides was mainly associated with the Sacramento and San Joaquin Valleys. Glyphosate increased mainly in the San Joaquin Valley, possibly because of the introduction of genetically modified Roundup Ready (glyphosate) alfalfa varieties. Although the reasons for selecting certain herbicides were unclear, efforts to use materials that are less likely to contaminate groundwater may have played a role in this reduction.

Fungicide use increased in 2006 both in pounds (249 percent) and acres treated (43 percent). The trend may reflect the wet spring in 2006. However, for alfalfa, fungicide use is not as significant as it is for herbicides and insecticides.

## **Processing tomatoes**

Processing tomato growers planted 283,000 acres in 2006, a six percent increase over 2005. 105,200 acres of processing tomatoes are grown in Fresno County (37 percent of the crop), followed by San Joaquin County (35,000 acres), Yolo County (34,000 acres), and Kings County (21,000 acres).


**Table 16A.** Total reported pounds of all active ingredients (AIs), acres treated, acres planted, and prices for processing tomatoes each year from 2002 to 2006. Planted acres from 2001 to 2006 are from NASS, May 2007b; marketing year average prices from 2001 to 2003 are from NASS, January 2004; from 2004 to 2006 from NASS, January 2007.

|                   | 2002       | 2003       | 2004       | 2005       | 2006       |
|-------------------|------------|------------|------------|------------|------------|
| Lbs Al            | 10,697,673 | 10,972,337 | 11,531,330 | 11,297,315 | 12,259,858 |
| Acres Treated     | 2,064,929  | 2,662,371  | 2,505,256  | 2,777,416  | 2,960,870  |
| Acres Planted     | 296,000    | 289,000    | 301,000    | 267,000    | 283,000    |
| Lbs/acres treated | 5.18       | 4.12       | 4.60       | 4.07       | 4.14       |
| Lbs/acres planted | 36.14      | 37.97      | 38.31      | 42.31      | 43.32      |
| Price \$/ton      | \$56.80    | \$57.20    | \$57.40    | \$59.60    | \$62.70    |

**Table 16B**. Percent difference from previous year for reported pounds of all AIs, acres treated, acres planted, and prices for processing tomatoes from 2002 to 2006.

|                   | 2002 | 2003 | 2004 | 2005 | 2006 |
|-------------------|------|------|------|------|------|
| Lbs Al            | 34   | 3    | 5    | -2   | 9    |
| Acres Treated     | 8    | 29   | -6   | 11   | 7    |
| Acres Planted     | 15   | -2   | 4    | -11  | 6    |
| Lbs/acres treated | 24   | -20  | 12   | -12  | 2    |
| Lbs/acres planted | 17   | 5    | 1    | 10   | 2    |
| Price \$/ton      | -1   | 1    | 0    | 4    | 5    |

**Figure 14**. Acres of processing tomatoes treated by all AIs in the major types of pesticides from 1994 to 2006.



**Table 16C**. The non-adjuvant pesticides with the largest change in acres treated of processing tomatoes from 2005 to 2006. This table shows acres treated with AI each year from 2002 to 2006, the change in acres treated and percent change from 2005 to 2006.

|                 |              |         |         |         |         |         |         | Pct    |
|-----------------|--------------|---------|---------|---------|---------|---------|---------|--------|
| Al              | AI TYPE      | 2002    | 2003    | 2004    | 2005    | 2006    | Change  | Change |
| COPPER          | FUNGICIDE    | 24,478  | 99,683  | 21,096  | 136,762 | 74,136  | -62,626 | -46    |
| BACILLUS        |              |         |         |         |         |         |         |        |
| THURINGIENSIS   | INSECTICIDE  | 52,633  | 82,832  | 53,599  | 60,234  | 32,216  | -28,018 | -47    |
| EMAMECTIN       |              |         |         |         |         |         |         |        |
| BENZOATE        | INSECTICIDE  | 0       | 0       | 22,500  | 29,288  | 56,975  | 27,687  | 95     |
|                 | PLANT GROWTH |         |         |         |         |         |         |        |
| ETHEPHON        | REGULATOR    | 37,342  | 33,124  | 8,307   | 27,950  | 54,475  | 26,525  | 95     |
| MANEB           | FUNGICIDE    | 2,310   | 36,448  | 9,625   | 41,186  | 16,988  | -24,198 | -59    |
| S-METOLACHLOR   | HERBICIDE    | 68,019  | 81,643  | 142,195 | 145,364 | 168,872 | 23,507  | 16     |
| METHOXYFENOZIDE | INSECTICIDE  | 0       | 0       | 33,893  | 71,046  | 93,152  | 22,106  | 31     |
| TRIFLURALIN     | HERBICIDE    | 178,589 | 182,458 | 196,807 | 182,284 | 202,127 | 19,843  | 11     |
| IMIDACLOPRID    | INSECTICIDE  | 16,326  | 21,660  | 30,045  | 23,559  | 42,070  | 18,512  | 79     |
| GLYPHOSATE      | HERBICIDE    | 64,791  | 89,765  | 97,571  | 101,177 | 118,161 | 16,985  | 17     |
| ENDOSULFAN      | INSECTICIDE  | 15,019  | 25,724  | 22,986  | 22,578  | 6,611   | -15,967 | -71    |
| MANCOZEB        | FUNGICIDE    | 16,914  | 36,316  | 9,433   | 63,256  | 47,973  | -15,283 | -24    |
| LAMBDA-         |              |         |         |         |         |         |         |        |
| CYHALOTHRIN     | INSECTICIDE  | 45,891  | 44,501  | 60,669  | 56,655  | 69,821  | 13,166  | 23     |
| MYCLOBUTANIL    | FUNGICIDE    | 5,008   | 8,692   | 19,310  | 19,042  | 31,505  | 12,463  | 65     |
| CHLOROTHALONIL  | FUNGICIDE    | 101,880 | 108,230 | 94,490  | 101,997 | 114,304 | 12,307  | 12     |

Planted acres increased by 6 percent from 2005 and pounds of pesticide AI used on the crop increased by 9 percent, considered a moderate increase given the early season rain and later heat problems. Pounds of AI per acre planted increased to the highest level in 5 years as growers try to protect a crop that increased in value by 4 percent in 2005 and another 5 percent in 2006—to \$62.70 per ton. As in past years, sulfur and metam-sodium accounted for over 80 percent of the total pounds of pesticide active ingredient applied to tomatoes in 2006.

The number of acres treated with insecticide increased from 2005 to 2006, partly due to pressure from lepidopterous pests, fleabeetles and continuing concerns about leafhopper vectored curly top virus. However, the actual pounds of insecticides applied decreased because of a switch to low use rate insecticides. Imidacloprid was used 79 percent more acres in 2006 (42,070 treated acres) for curly top management, but pounds of AI increased to 4,289 pounds, accounting for less than 3 percent of all pounds of insecticide used on processing tomatoes. Emamectin benzoate had a large increase in number of treated acres, from 29,288 acres in 2005 to 56,975 acres in 2006, but pounds of AI used only increased from 272 to 551 pounds, or less than 0.3 percent of total pounds of insecticide used. Lepidopteran pests and stinkbugs were a major concern that caused an overall increase in the use of pyrethroids early in the year (permethrin, esfenvalerate and lambda-cyhalothrin) followed by indoxacarb, methoxyfenozide and tebufenozide later in the season. Dimethoate remains the highest use insecticide in pounds AI in 2006, increasing slightly from 2005 (41,768 pounds) to 42,235 pounds.

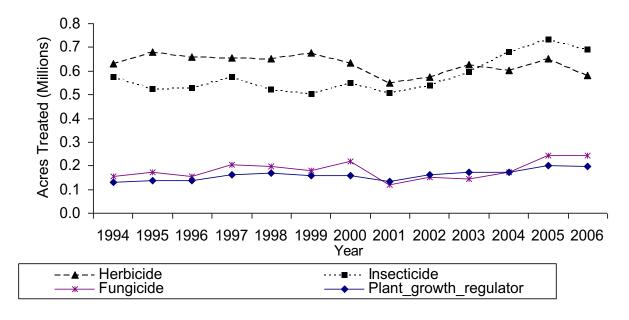
Overall, pounds of herbicides increased in 2006 due to early rain. Tomato growers were forced to switch to postemergence herbicides—glyphosate, paraquat and oxyfluorfen—in wet fields to control emerged weeds. Transplant tomatoes continue to increase over direct seeded, resulting in increased pounds of s-metalochlor (17 percent) and metribuzin (37 percent) and decreased pounds of napropamide (-22 percent) and pebulate (-81 percent). Pounds of the fumigant metam-

sodium for preplant weed control increased 12 percent. Over 70 percent of the metam-sodium was applied January and February.

Sulfur was used for russet mite and powdery mildew during May, June, July and August. Acres treated with sulfur increased slightly in 2006, while total pounds applied decreased from 7,882,610 pounds in 2005 to 7,793,831 pounds in 2006. Chlorothalonil use increased in acres treated, up 12,307 acres or 12 percent, and in pounds of AI applied, also increasing 12 percent over 2005—from 173,983 to 194,879, mostly for late season disease management to limit defoliation and resulting sunburn. Over 75 percent of the chlorothalanil was applied during August and September in 2006.

# **Oranges**

Oranges are the thirteenth highest value crop grown in California. Eighty-six percent of California oranges are grown in the San Joaquin Valley (Fresno, Kern and Tulare counties) with over half of the total in Tulare county alone. The rest are grown in the interior region (five percent in Riverside and San Bernardino counties) and on the south coast (about seven percent of the state's acreage, mostly in Ventura and San Diego).


**Table 17A.** Total reported pounds of all active ingredients (AIs), acres treated, acres planted, and prices for oranges each year from 2002 to 2006. Bearing acres from 2000-01 to 2004-05 are from CDFA 2006; bearing acres in 2005-06 are from NASS, September 2006; marketing year average prices (equivalent P.H.D.) in 1999-00 to 2001-01 are from NASS, July 2003; prices in 2001-02 to 2002-03 are from NASS, July 2005; prices from 2003-04 to 2005-06 are from NASS, July 2007b. A box is about 75 pounds of oranges.

|               | 2002      | 2003      | 2004      | 2005       | 2006       |
|---------------|-----------|-----------|-----------|------------|------------|
| Lbs Al        | 6,948,489 | 7,237,084 | 9,604,523 | 12,333,275 | 12,203,476 |
| Acres Treated | 1,929,371 | 2,067,982 | 2,249,087 | 2,627,278  | 2,517,084  |
| Acres Bearing | 195,000   | 189,500   | 184,000   | 182,000    | 181,000    |
| Price \$/box  | \$10.85   | \$7.51    | \$11.01   | \$9.36     | \$10.00    |

**Table 17B** Percent difference from previous year for reported pounds of all AIs, acres treated, acres planted, and prices for oranges from 2002 to 2006.

|               | 2002 | 2003 | 2004 | 2005 | 2006 |
|---------------|------|------|------|------|------|
| Lbs Al        | 10   | 4    | 33   | 28   | -1   |
| Acres Treated | 11   | 7    | 9    | 17   | -4   |
| Acres Planted | -2   | -3   | -3   | -1   | -1   |
| Price \$/ton  | 15   | -31  | 47   | -15  | 7    |

Figure 15. Acres of oranges treated by all AIs in the major types of pesticides from 1994 to 2006.



**Table 17C**. The non-adjuvant pesticides with the largest change in acres treated of oranges from 2005 to 2006. This table shows acres treated with AI each year from 2002 to 2006, the change in acres treated and percent change from 2005 to 2006.

| Al            | AI TYPE              | 2002    | 2003    | 2004    | 2005    | 2006    | Change ( | Pct<br>Change |
|---------------|----------------------|---------|---------|---------|---------|---------|----------|---------------|
| GLYPHOSATE    | HERBICIDE            | 344,718 |         |         |         |         | _        | -12           |
| CHLORPYRIFOS  | INSECTICIDE          | •       | ,       | •       | 102,810 | •       | ,        | -24           |
| SIMAZINE      | HERBICIDE            | 92,174  | 95,349  | 93,651  | 101,451 | 81,011  | -20,440  | -20           |
| DIURON        | HERBICIDE            | 102,198 | 100,289 | 95,155  | 100,494 | 82,708  | -17,786  | -18           |
| BACILLUS      |                      |         |         |         |         |         |          |               |
| THURINGIENSIS | INSECTICIDE          | 21,943  | 24,049  | 31,601  | 42,872  | 27,834  | -15,038  | -35           |
| PENDIMETHALIN | HERBICIDE            | 2,256   | 1,922   | 3,474   | 4,459   | 16,073  | 11,614   | 260           |
| ACEQUINOCYL   | INSECTICIDE          | 0       | 0       | 0       | 2,920   | 13,666  | 10,746   | 368           |
|               |                      |         |         |         |         |         |          |               |
| LIMONENE      | INSECTICIDE/ADJUVANT | 7,413   | 6,650   | 4,005   | 27,698  | 37,067  | 9,369    | 34            |
| IMIDACLOPRID  | INSECTICIDE          | 9,893   | 14,414  | 12,689  | 4,209   | 13,502  | 9,293    | 221           |
| OIL           | INSECTICIDE          | 145,229 | 156,938 | 202,753 | 205,507 | 196,535 | -8,973   | -4            |
| CARFENTRAZONE | -                    |         |         |         |         |         |          |               |
| ETHYL         | HERBICIDE            | 0       | 0       | 0       | 237     | 9,004   | 8,767    | 3,695         |
| PYRIDABEN     | INSECTICIDE          | 7,214   | 10,877  | 5,888   | 17,097  | 10,453  | -6,644   | -39           |
| DIPHACINONE   | OTHER                | 41,988  | 30,610  | 44,803  | 25,865  | 31,537  | 5,673    | 22            |
| COPPER        | FUNGICIDE            | 147,364 | 135,245 | 163,517 | 234,484 | 239,651 | 5,167    | 2             |
| DICOFOL       | INSECTICIDE          | 3,106   | 5,192   | 3,816   | 5,545   | 537     | -5,008   | -90           |

Acres treated with all pesticides in oranges dropped slightly (-4 percent) in 2006 although the pounds per acre treated increased by almost the same amount (3 percent). The largest decrease was in the amount of herbicides used. The number of bearing acres continued to decrease, a trend since 2001.

The year began with widespread precipitation, interfering with the citrus harvest. After a dry period, the wet weather resumed during March and April. This caused a decrease in fruit quality. A rapid warming and drying trend in June caused some concern about fruit drop. Cold

temperatures in late December 2006 enhanced fruit appearance at first but then frosty weather caused some ice marks.

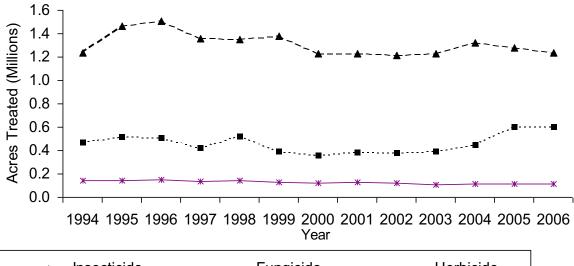
Overall, acres treated with insecticides decreased by 6 percent between 2005 and 2006. The majority of this came from decreases in the use of chlorpyrifos and *Bacillus thuringiensis* followed by oil, pyridaben, and dicofol. Slightly offsetting these declines were increases in acequinocyl and imidacloprid. Oil, spinosad, chlorpyrifos, cyfluthrin, pyriproxyfen, and Bacillus thuringiensis were the most widely used insecticides by acres treated. Chlorpyrifos is a broadspectrum insecticide used on many citrus pests. Imidacloprid is used primarily for glassy-winged sharpshooter control although some growers are using it for citricola scale control. Bacillus thuringiensis is used for caterpillar pests and its decreased use is tied to the lower pest pressure from lepidopteran pests. Pyridaben is used for mite control and the decline in use is probably tied to the increase in use of acequinocyl, a newer miticide. Dicofol, an older miticide, has resistance issues and its use is being replaced with acequinocyl as well. Spinosad is used for citrus thrips. Oil is a broad-spectrum insecticide for mites and scales and is also used as an adjuvant in pesticide treatments. Use of these chemicals decreased by 3 percent and 4 percent respectively. Cyfluthrin is used for citrus thrips and katydids. Acres treated with this insecticide increased by 7 percent. These differences in use maybe caused by one chemical being substituted for another.

Acres treated with fungicides did not change appreciably between 2005 and 2006 Copper was the most widely used fungicide and its use increased by 2 percent. Copper is used to prevent *Phytophthora gummosis*, *Phytophthora* root rot, and fruit diseases such as brown rot and Septoria spot. These diseases are exacerbated by wet weather.

Acres treated with herbicides decreased by almost 11 percent between 2005 and 2006. Glyphosate was used most, followed by diuron and simazine. Glyphosate is used to control weeds post-emergence. Diuron and simazine are used for pre-emergent weed control. Decreased use of simazine and diuron is partially due to ground water regulations. The new use of pendimethalin and carfentreazone-ethyl as replacements also accounts for some of the decreased use.

## **Head Lettuce**

Head lettuce is grown in four regions in the state: the central coastal area (Monterey, San Benito, Santa Cruz, and Santa Clara counties); the southern coastal area (Santa Barbara and San Luis Obispo counties); the San Joaquin Valley (Fresno, Kings, and Kern counties); and the southern deserts (Imperial and Riverside counties). In 2004, 59 percent of all California head lettuce was planted in the central coastal area, 17 percent in the southern coastal area, 12 percent in the San Joaquin Valley, and 11 percent in the southern deserts. California produces 70 to 75 percent of the head lettuce grown in the United States annually. In this analysis, the central and southern coastal areas are combined.


**Table 18A**. Total reported pounds of all active ingredients (AIs), acres treated, acres planted, and prices for head lettuce each year from 2002 to 2006. Harvested acres from 2001 to 2005 are from CDFA 2006; harvested acres in 2006 are from NASS, January 2007; marketing year average prices from 2001 to 2006 from NASS, July 2007b.

|                 | 2002      | 2003      | 2004      | 2005      | 2006      |
|-----------------|-----------|-----------|-----------|-----------|-----------|
| Lbs Al          | 1,683,844 | 1,731,653 | 1,619,094 | 1,826,524 | 1,881,094 |
| Acres Treated   | 2,022,839 | 2,043,869 | 2,227,683 | 2,360,578 | 2,312,044 |
| Acres Harvested | 130,000   | 132,000   | 131,000   | 131,000   | 125,000   |
| Lbs/treated     | 0.83      | 0.85      | 0.73      | 0.77      | 0.81      |
| Lbs/planted     | 12.95     | 13.12     | 12.36     | 13.94     | 15.05     |
| Price \$/lb     | \$14.90   | \$21.00   | \$15.10   | \$15.80   | \$17.60   |

Table 18B. Percent difference from previous year for reported pounds of all AIs, acres treated, acres planted, and prices for head lettuce from 2002 to 2006.

|                 | 2002 | 2003 | 2004 | 2005 | 2006 |
|-----------------|------|------|------|------|------|
| Lbs Al          | 18   | 3    | -7   | 13   | 3    |
| Acres Treated   | -3   | 1    | 9    | 6    | -2   |
| Acres Harvested | 2    | 2    | -1   | 0    | -5   |
| Lbs/treated     | 21   | 2    | -14  | 6    | 5    |
| Lbs/planted     | 16   | 1    | -6   | 13   | 8    |
| Price \$/lb     | -19  | 41   | -28  | 5    | 11   |

Figure 16. Acres of head lettuce treated by all AIs in the major types of pesticides from 1994 to 2006.



**Table 18C**. The non-adjuvant pesticides with the largest change in acres treated of head lettuce from 2005 to 2006. This table shows acres treated with AI each year from 2002 to 2006, the change in acres treated and percent change from 2005 to 2006.

|                |             |         |         |         |         |         |         | Pct    |
|----------------|-------------|---------|---------|---------|---------|---------|---------|--------|
| Al             | AI TYPE     | 2002    | 2003    | 2004    | 2005    | 2006    | Change  | Change |
| PYRACLOSTROBIN | FUNGICIDE   | 0       | 0       | 0       | 0       | 24,247  | 24,247  |        |
| FAMOXADONE     | FUNGICIDE   | 0       | 0       | 0       | 45,541  | 30,001  | -15,540 | -34    |
| CYMOXANIL      | FUNGICIDE   | 0       | 0       | 0       | 45,541  | 30,001  | -15,540 | -34    |
| BOSCALID       | FUNGICIDE   | 0       | 0       | 8,475   | 22,228  | 36,550  | 14,321  | 64     |
| ENDOSULFAN     | INSECTICIDE | 17,930  | 16,258  | 17,918  | 15,727  | 29,426  | 13,699  | 87     |
| ACEPHATE       | INSECTICIDE | 115,617 | 95,768  | 94,933  | 83,107  | 69,729  | -13,378 | -16    |
| LAMBDA-        |             |         |         |         |         |         |         |        |
| CYHALOTHRIN    | INSECTICIDE | 85,790  | 83,039  | 82,101  | 89,198  | 75,830  | -13,368 | -15    |
| METHOMYL       | INSECTICIDE | 69,701  | 56,422  | 43,002  | 63,791  | 76,378  | 12,587  | 20     |
| DIMETHOATE     | INSECTICIDE | 54,294  | 59,728  | 69,680  | 61,097  | 49,833  | -11,263 | -18    |
| ESFENVALERATE  | INSECTICIDE | 25,927  | 26,709  | 32,367  | 34,763  | 24,186  | -10,577 | -30    |
| PERMETHRIN     | INSECTICIDE | 155,347 | 145,723 | 123,483 | 130,178 | 119,604 | -10,574 | -8     |
| ABAMECTIN      | INSECTICIDE | 58,407  | 49,292  | 50,525  | 35,835  | 44,561  | 8,725   | 24     |
| EMAMECTIN      |             |         |         |         |         |         |         |        |
| BENZOATE       | INSECTICIDE | 36,458  | 40,132  | 50,718  | 50,698  | 42,156  | -8,543  | -17    |
| MANEB          | FUNGICIDE   | 228,538 | 230,529 | 232,101 | 234,446 | 225,987 | -8,459  | -4     |
| INDOXACARB     | INSECTICIDE | 42,177  | 57,659  | 36,789  | 31,926  | 24,403  | -7,523  | -24    |

Pesticide use on head lettuce fluctuated from 2002 through 2006 (Table 18A). Pounds of AI increased 3 percent from 2005 to 2006 but acres treated decreased 2 percent. There was a 5 percent decrease from 2005 to 2006 in acres of head lettuce harvested. Acres treated with fungicides remained nearly the same in 2006 as in 2005, herbicides increased 1 percent, while insecticides declined 4 percent (Figure 16). In contrast, by pounds fungicides decreased by 5 percent, herbicides increased by 12 percent, and insecticides increased by 1 percent. Although use of fumigants accounts for only 0.2 percent of total acres treated, they account for 36 percent of the total pounds of AI applied to head lettuce.

Major pesticides with the largest increase in acres treated were pyraclostrobin, boscalid, endosulfan, methomyl, and abamectin (Table 18C). Major pesticides with the largest decrease were famoxadone, cymoxanil, acephate, λ-cyhalothrin, dimethoate, esfenvalerate, permethrin, emamectin benzoate, maneb, and indoxacarb. During 2006, the top insecticides used (by acres treated) were diazinon, spinosad, permethrin, (S)-cypermethrin, and imidacloprid. The main fungicides used were maneb, dimethomorph, fosetyl-al, boscalid, cymoxanil and famoxadone. Three herbicides dominated — propyzamide (pronamide), bensulide, and benefin. Metamsodium was the main fumigant used, followed by 1,3–dichloropropene, chloropicrin, and methyl bromide.

From 2006 to 2005, insecticide use—as measured by acres treated—declined by 6 percent in the southern deserts, and 4 percent in the coastal areas and San Joaquin Valley. The insecticides spinosad and (S)-cypermethrin are used to manage larvae of beet armyworm and cabbage looper, primarily pests in the southern deserts. Use of these insecticides, as measured by acres treated, decreased in the southern deserts in 2006. However, use of indoxacarb, a selective insecticide for worm pests, increased in the southern deserts, due to sporadic worm pressure in late fall. Indoxacarb use decreased by over 20 percent in all other regions. Emamectin benzoate, used for worm pests, is a synthetically modified form of abamectin. Its use decreased in all lettuce-growing areas, particularly the coastal area. Methomyl, used for worms, increased by 62 percent

in the San Joaquin Valley, but decreased by 9 percent in the coastal area. Use of permethrin, which is primarily used for controlling seedling pests in the southern deserts such as crickets, earwigs, cutworms, and sowbugs, remained flat. Diazinon use decreased by 8 percent in the southern deserts, where it is often used for stand-establishment pests such as crickets, darkling ground beetles, earwigs, and sowbugs.

Diazinon is a preplant treatment applied for soil pests, and until 2005 was recommended for symphylans, which show up in some coastal fields. A recent trial showed better control by the pyrethroids  $\lambda$ -cyhalothrin and (S)-cypermethrin. However, use of diazinon increased by 3 percent in the coastal area, and that of  $\lambda$ -cyhalothrin decreased by 15 percent. In contrast, use of S-cypermethrin increased by 26 percent. Throughout California from 2005 to 2006, use of dimethoate, acephate, and the neonicotinoid insecticide, imidacloprid, decreased on lettuce aphids by 18, 16 and 4 percent, respectively; however endosulfan use jumped 87 percent. While use of endosulfan decreased by 38 percent in the southeast deserts, it increased in the central San Joaquin Valley by 89 percent. Endosulfan is also rotated into use for loopers. Insecticides such as abamectin have replaced permethrin to manage leafminers. Abamectin use in 2006 increased by 31 percent in the coastal area and 16 percent in the San Joaquin Valley due to mounting leafminer pressure. In 2005, abamectin use had fallen off from previous years because leafminer pressure had dropped.

Fungicide use by acres treated decreased 4 percent from 2005 to 2006. Several active ingredients—both old chemistry and reduced risk, are rotated for downy mildew, a disease that has many pathovars. In 2006, maneb was the dominant fungicide used in head lettuce production, primarily to control downy mildew and prevent anthracnose. In general, use of maneb declined from 2005 to 2006, as did that of dimethomorph, fosetyl-al, and famoxidone/cymoxanil. Use of fosetyl-al decreased in all lettuce-growing areas except the San Joaquin Valley, possibly due to rotation to counter the prevalent downy mildew pathovars. A new reduced-risk product for downy mildew registered in 2005 contains equal amounts of the active ingredients cymoxanil and famoxadone. After its honeymoon year in 2005, the product was rotated out, except in the southern deserts where its use in 2006 covered four times more acreage than in 2005. (See sulfur below for powdery mildew.)

Lettuce drop (Sclerotinia drop) is another fungal disease with a shift in popular active ingredients. Use of iprodione fell in the coastal area and southern deserts from 2005 to 2006, but rose in the San Joaquin Valley. Use of boscalid, a new reduced-risk material, continued to rise in all lettuce-growing areas. Dicloran use fell, except in the southern deserts, where it had never been used. (See also chloropicrin below.) Sulfur is applied as a foliar treatment for powdery mildew, and along with the reduced-risk fungicide, azoxystrobin, is the only labeled product used to manage this disease. Sulfur use increased from 2005 to 2006 in the San Joaquin Valley (over 16,000 acres covered), while that of azoxystrobin increased by 159 percent (almost 5,000 acres covered).

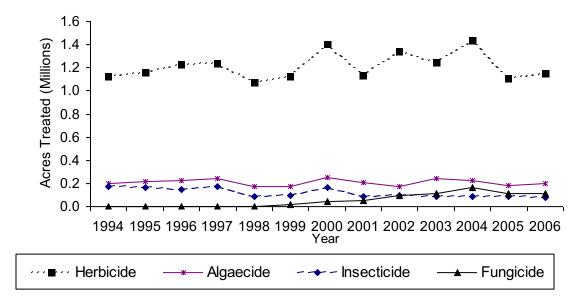
Herbicide use by acres treated increased by one percent from 2005 to 2006, possibly due to wet spring weather throughout the state. Use of propyzamide (pronamide), applied as a postplant—preemergence herbicide, increased statewide by 3 percent from 2005 to 2006, except in the southern deserts, where use decreased by 5 percent. As consistent with its use for the past ten years, propyzamide was applied to many more acres than the preemergent, bensulide, which targets small-seeded annual grasses and is not as effective as propyzamide in the coastal areas.

Use of benefin, a pre-plant herbicide popular in the San Joaquin Valley, decreased statewide from 2005 to 2006.

Nematodes are not economic pests of head lettuce, so soil is primarily fumigated to control soil-borne diseases. In 2006, fumigants, mostly metam-sodium, were used on about 0.2 percent of all lettuce acreage. Each lettuce-growing area had a unique assortment of fumigants. Metam-sodium was used exclusively in the San Joaquin Valley; 1,3—dichloropropene primarily in the deserts; and methyl bromide entirely in the coastal area. Although mainly used to eliminate soil-borne diseases, metam-sodium also controls weeds in lettuce fields, if somewhat unreliably. Chloropicrin is used to reduce soil populations of Verticillium wilt and lettuce drop alone or when combined with methyl bromide or 1,3—dichloropropene. In 2006, chloropicrin was used mainly in the coastal area, and use decreased by 8 percent.

## Rice

California's Sacramento Valley contains more than 95 percent of the state's rice acreage. The remainder is in north to central San Joaquin Valley. The leading rice-producing counties are Colusa, Sutter, Butte, Glenn, and Yolo. Approximately 500,000 acres in the Sacramento Valley are of a soil type restricting the crops to rice or pasture. The remainder of the acreage has greater crop flexibility.


**Table 19A.** Total reported pounds of all active ingredients (AIs), acres treated, acres planted, and prices for rice each year from 2002 to 2006. Planted acres from 2001 to 2005 are from CDFA, 2006; planted acres in 2006 are from NASS, June 2007; marketing year average prices from 2001 to 2004 are from NASS, July 2003, July 2004, and July 2006; 2005 and 2006 prices are from NASS, July 2007b. "cwt" stands for "hundredweight", that is, 100 pounds.

|                      | 2002      | 2003      | 2004      | 2005      | 2006      |
|----------------------|-----------|-----------|-----------|-----------|-----------|
| Lbs Al               | 5,968,987 | 6,493,071 | 6,624,181 | 5,131,500 | 5,456,428 |
| Acres Treated        | 2,195,511 | 2,229,602 | 2,756,203 | 1,996,823 | 2,100,355 |
| <b>Acres Planted</b> | 533,000   | 509,000   | 595,000   | 528,000   | 526,000   |
| Price \$/cwt         | \$6.32    | \$10.40   | \$7.34    | \$10.10   | \$11.60   |

**Table 19B**. Percent difference from previous year for reported pounds of all AIs, acres treated, acres planted, and prices for rice from 2002 to 2006.

|               | 2002 | 2003 | 2004 | 2005 | 2006 |
|---------------|------|------|------|------|------|
| Lbs Al        | 0    | 9    | 2    | -23  | 6    |
| Acres Treated | 17   | 2    | 24   | -28  | 5    |
| Acres Planted | 13   | -5   | 17   | -11  | 0    |
| Price \$/cwt  | 20   | 65   | -29  | 38   | 15   |

Figure 17. Acres of rice treated by all AIs in the major types of pesticides from 1994 to 2006.



**Table 19C**. The non-adjuvant pesticides with the largest change in acres treated of rice from 2005 to 2006. This table shows acres treated with AI each year from 2002 to 2006, the change in acres treated and percent change from 2005 to 2006.

| Al                                      | AI TYPE     | 2002    | 2003    | 2004    | 2005    | 2006    | <br>  Change | Pct<br>Change |
|-----------------------------------------|-------------|---------|---------|---------|---------|---------|--------------|---------------|
| CLOMAZONE                               | HERBICIDE   | 945     | 56,629  | 85,850  | 71,315  | 119,166 | 47,851       | 67            |
| THIOBENCARB                             | HERBICIDE   | 222,414 | 154,928 | 136,132 | 118,786 | 79,109  | -39,677      | -33           |
| CYHALOFOP BUTYL                         | HERBICIDE   | 31,695  | 93,349  | 201,215 | 78,238  | 107,917 | 29,679       | 38            |
| COPPER SULFATE                          | ALGAECIDE   | 170,647 | 242,611 | 227,340 | 179,268 | 199,927 | 20,658       | 12            |
| (S)-CYPERMETHRIN                        | INSECTICIDE | 25      | 22,924  | 30,535  | 21,814  | 38,257  | 16,444       | 75            |
| LAMBDA-<br>CYHALOTHRIN                  | INSECTICIDE | 80,174  | 54,979  | 49,901  | 54,627  | 39,618  | -15,010      | -27           |
| PROPANIL<br>TRICLOPYR,<br>TRIETHYLAMINE | HERBICIDE   | 353,402 | 312,139 | 376,499 | 307,673 | 317,521 | 9,848        | 3             |
| SALT                                    | HERBICIDE   | 264,351 | 242,478 | 309,007 | 236,598 | 245,837 | 9,239        | 4             |
| CARFENTRAZONE-<br>ETHYL                 | HERBICIDE   | 16,426  | 70,814  | 45,883  | 25,749  | 33,442  | 7,693        | 30            |
| MOLINATE                                | HERBICIDE   | 222,044 | 134,120 | 89,593  | 40,535  | 33,044  | -7,491       | -18           |
| GLYPHOSATE                              | HERBICIDE   | 29,736  | 31,081  | 26,961  | 17,271  | 11,070  | -6,200       | -36           |
| FENOXAPROP-P-<br>ETHYL                  | HERBICIDE   | 5,805   | 6,469   | 3,989   | 22,572  | 28,253  | 5,681        | 25            |
| 2,4-D                                   | HERBICIDE   | 24,155  | 22,914  | 20,960  | 17,914  | 12,893  | -5,021       | -28           |
| PENOXSULAM<br>HALOSULFURON-             | HERBICIDE   | 0       | 0       | 0       | 73,058  | 77,151  | 4,093        | 6             |
| METHYL                                  | HERBICIDE   | 50      | 112     | 3,272   | 5,135   | 1,661   | -3,475       | -68           |

Total pesticide use (as pounds AI) in rice has generally increased since 1993. Pesticide use increased approximately 5 percent from 2005 to 2006 in terms of acres treated, and increased approximately 6 percent in terms of pounds AI applied. The increase occurred despite a slight decrease in rice acres planted of approximately 2000 acres. In 2006, there were no major shifts in pest pressure. Herbicides accounted for most of the pesticide use; approximately 70 percent of non-adjuvant pesticide acres treated has been with herbicides. Herbicide use increased by

approximately 4 percent from 2005 to 2006. Insecticide use has been decreasing generally and fungicide use increasing since 1993; from 2005 to 2006 acres treated with insecticides decreased 2 percent and fungicides decreased 3 percent. Major pesticides with the largest increases in acres treated include clomazone, cyhalofop butyl, copper, s-cypermethrin, and propanil. Pesticides with the largest percentage decreases in use include thiobencarb, lambda-cyhalothrin, molinate, glyphosate, and oxyfluorfen.

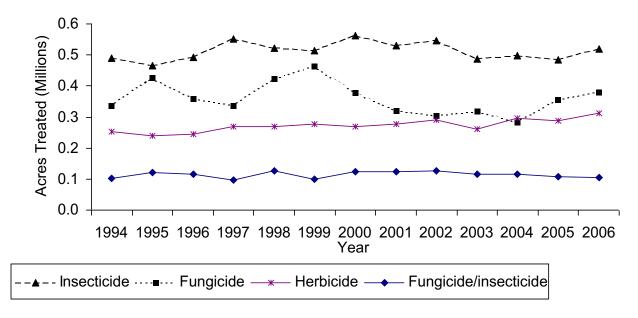
Lambda-cyhalothrin is the most widely used insecticide by acres treated and its use remains steady, with a 27 percent decrease in 2006 due to the increasing popularity of s-cypermethrin. The insecticide s-cypermethrin was first registered on rice in 2002. Growers are gradually learning about this AI which is why there was a significant increase in 2006. Both insecticides are used primarily for rice water weevil control and secondarily for armyworm control. Insect pressure is low for California rice and these insecticides are used on approximately 10 percent of all rice planted in California.

Copper sulfate is the only algaecide registered for use on California rice, and one of the few products acceptable for organic rice production. The product doubles as a control for tadpole shrimp, which is very important to organic rice growers. Several factors could have contributed to the 12 percent increase in use of copper sulfate: 1) algae resistance to copper sulfate, 2) unusual weather patterns in 2006 (wet early winter and in March and April with excessively hot July), and 3) a steady growing increase in organic rice production (4-5 percent of the total acreage).

The major herbicides by acres treated in rice in 2006 were propanil, triclopyr, clomazone, cyhalofop butyl, thiobencarb, and penoxsulam. Use of nearly all the major herbicides increased slightly, except for thiobencarb, bispyribac-sodium, and molinate. Reasons for this include the decreased use of molinate for watergrass control (it is being phased-out) and the decreased use of thiobencarb for sprangletop control (due to its narrow timing window for effectiveness and watergrass resistance). Resistance also accounts for the increases in use of clomazone and propanil. Loss of into-the-water molinate and the reduced use of thiobencarb prompts the use of foliar herbicides (cyhalofop and propanil); these herbicides require draining the field or lowering the water level, which in turn increases sprangletop incidence and growers' increased use of cyhalofop-butyl. Glyphosate is used as a preplant herbicide in rice. The 36 percent decrease in glyphosate use was due to the late and shortened planting season due to adverse weather conditions.

## **Peaches and Nectarines**

California ranks first in the U.S for peach and nectarine production. Nearly all nectarines are grown in California—35,500 acres—with a small amount, 1,400 acres, in Washington. The state accounts for 72 percent of the U.S. peach crop but only 47 percent of the U.S. acres planted to peaches. Clingstone peaches, largely grown in the Sacramento Valley, are used exclusively for processing into canned and frozen products (including baby food) and juice. Most fresh market peaches and nectarines are produced in the central San Joaquin Valley. Peach acreage decreased by 9 percent in 2006, while nectarine acreage declined slightly. A USDA tree-pull program resulted in the removal of over 5,000 cling peach acres in winter 2005, accounting for most of the decline. This USDA action was done as a response to peach and nectarine overproduction.


**Table 20A**. Total reported pounds of all active ingredients (AI), acres treated, acres planted, and prices for peaches and nectarines each year from 2002 to 2006. Bearing acres for peaches and nectarines from 2001 to 2005 are from CDFA 2006; bearing acres in 2006 are from NASS, July 2007a; marketing year average prices for fresh (freestone) peach from 2001 to 2005 are from NASS July 2003, July 2004, July 2006; 2005 and 2006 prices are from NASS July 2007b; prices for nectarines years 2001 to 2006 from NASS, July 2007b.

|                         | 2002      | 2003      | 2004      | 2005      | 2006      |
|-------------------------|-----------|-----------|-----------|-----------|-----------|
| Lbs Al                  | 6,708,063 | 6,481,024 | 6,438,443 | 6,513,056 | 6,785,316 |
| Acres Treated           | 1,619,645 | 1,513,195 | 1,519,265 | 1,581,849 | 1,695,390 |
| Acres Bearing Peach     | 68,000    | 68,000    | 69,000    | 66,400    | 61,000    |
| Acres Bearing Nectarine | 36,500    | 36,500    | 36,500    | 36,500    | 35,500    |
| Acres Bearing Total     | 104,500   | 104,500   | 105,500   | 102,900   | 96,500    |
| Price \$/ton Peach      | \$418.00  | \$406.00  | \$341.00  | \$540.00  | \$597.00  |
| Price \$/ton Nectarine  | \$382.00  | \$436.00  | \$342.00  | \$507.00  | \$522.00  |
| Price \$/ton Total      | \$405.43  | \$416.48  | \$341.35  | \$528.29  | \$569.41  |

**Table 20B**. Percent difference from previous year for reported pounds of all AIs, acres treated, acres planted, and prices for peaches and nectarines from 2002 to 2006.

|                         | 2002 | 2003 | 2004 | 2005 | 2006 |
|-------------------------|------|------|------|------|------|
| Lbs Al                  | 12   | -3   | -1   | 1    | 4    |
| Acres Treated           | 0    | -7   | 0    | 4    | 7    |
| Acres Bearing Peach     | 3    | 0    | 1    | -4   | -8   |
| Acres Bearing Nectarine | 0    | 0    | 0    | 0    | -3   |
| Acres Bearing Total     | 2    | 0    | 1    | -2   | -6   |
| Price \$/ton Peach      | -2   | -3   | -16  | 58   | 11   |
| Price \$/ton Nectarine  | -18  | 14   | -22  | 48   | 3    |
| Price \$/ton Total      | -8   | 3    | -18  | 55   | 8    |

*Figure 18.* Acres of peaches and nectarines treated by all AIs in the major types of pesticides from 1994 to 2006.



**Table 20C**. The non-adjuvant pesticides with the largest change in acres treated of peaches and nectarines from 2005 to 2006.

|                 |             |         |         |         |         |         |        | Pct    |
|-----------------|-------------|---------|---------|---------|---------|---------|--------|--------|
| Al              | AI TYPE     | 2002    | 2003    | 2004    | 2005    | 2006    | Change | Change |
| ZIRAM           | FUNGICIDE   | 35,605  | 32,187  | 35,472  | 39,451  | 57,398  | 17,946 | 45     |
| PYRACLOSTROBIN  | FUNGICIDE   | 0       | 0       | 7,336   | 19,967  | 29,696  | 9,729  | 49     |
| BOSCALID        | FUNGICIDE   | 0       | 0       | 7,336   | 19,967  | 29,696  | 9,729  | 49     |
| COPPER          | FUNGICIDE   | 86,931  | 88,582  | 84,728  | 79,751  | 70,499  | -9,252 | -12    |
| PHOSMET         | INSECTICIDE | 56,985  | 42,303  | 48,084  | 32,253  | 41,204  | 8,952  | 28     |
| PROPICONAZOLE   | FUNGICIDE   | 35,987  | 44,169  | 42,514  | 72,555  | 81,151  | 8,596  | 12     |
| GLYPHOSATE      | HERBICIDE   | 130,779 | 119,709 | 141,044 | 143,569 | 152,132 | 8,562  | 6      |
| PYRIMETHANIL    | FUNGICIDE   | 0       | 0       | 0       | 0       | 7,353   | 7,353  |        |
| MYCLOBUTANIL    | FUNGICIDE   | 15,841  | 9,358   | 9,376   | 19,126  | 12,440  | -6,686 | -35    |
| CARFENTRAZONE-  |             |         |         |         |         |         |        |        |
| ETHYL           | HERBICIDE   | 0       | 0       | 0       | 0       | 6,592   | 6,592  |        |
| METHOXYFENOZIDE | INSECTICIDE | 0       | 0       | 7,417   | 10,037  | 16,481  | 6,444  | 64     |
| SPINOSAD        | INSECTICIDE | 30,630  | 27,368  | 24,132  | 24,587  | 30,925  | 6,338  | 26     |
| OIL             | INSECTICIDE | 106,920 | 107,352 | 106,449 | 110,464 | 116,715 | 6,252  | 6      |
| FENBUCONAZOLE   | FUNGICIDE   | 21,004  | 19,936  | 7,961   | 10,196  | 3,967   | -6,229 | -61    |
| ESFENVALERATE   | INSECTICIDE | 100,373 | 92,192  | 98,028  | 95,817  | 101,573 | 5,756  | 6      |

Despite a decline in acreage from 2005, use of pesticides (pounds AI) increased, likely the result of increased disease pressure from a wet spring, and an 8 percent increase in crop prices due to a decline in production of 18 percent. Growers in 2006 were intent on protecting the small crop they had.

As in past years, oil accounted for over 92 percent of insecticide use and around half of all pesticides used in 2006 (pounds of AI). Other insecticides used in significant amounts included phosmet, chlorpyrifos and diazinon, all increasing in 2006 by 26 percent, 12 percent and 3 percent, respectively. In some cases, growers may be switching among effective OP insecticides based on local water sampling results. Peach twig borer populations are increasing, as pyrethroids become less effective, forcing growers to again consider dormant applications of chlorpyrifos and diazinon. Chlorpyrifos use was heaviest in December 2006—a 43 percent increase compared to 2005—and January 2006 (2 percent increase). Diazinon use peaked in January at 19,487 pounds of AI or 75 percent of the total diazinon use in 2006. Phosmet use targeted Oriental fruit moth and Katydid, with most use occurring in April through July (97,419 pounds AI; 97 percent of total 2006 use). With more and more growers selling to overseas markets, the use of phosmet should be expected to increase for control of lepidopteran pests of increasing concern. Spinosad use increased in terms of AI (3,311 pounds, up 29 percent) and acre treated (30,925 acres, up 26 percent).

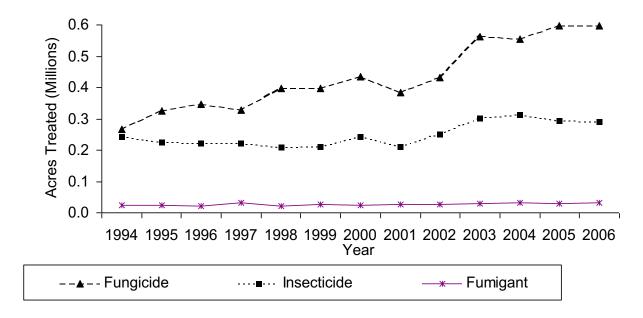
The long wet spring resulted in increased use of fungicides as growers tried to protect against brown rot and peach leaf curl. Propiconizole, a low use rate pesticide used on more acres than any other fungicide, increased 12 percent to 81,151 acres treated, though in terms of actual pounds applied, it was fourth at 14,994 pounds, following copper (577,776 pounds), ziram (314,581 pounds), and iprodione (22,186 pounds). Propiconizole is a broad-spectrum systemic fungicide that controls brown rot blossom blight, fruit brown rot and powdery mildew in stone fruit and has the advantage of a 0-day preharvest interval that allows late-season application for disease protection. Ziram pounds increased 37 percent. Pyraclostrobin/boscalid was used on 49 percent more acres in 2006, continuing a trend begun in 2004. Pristine is effective on shot hole,

brown rot, and powdery mildew. Growers continue to be concerned with resistance management and rotate fungicides each year and within the year. Pyrimethanil was a new low risk fungicide used on 7,353 acres with 1,896 pounds in 2006. Although copper is still widely applied, its use continues to decline in pounds AI and acres treated, down 5 and 12 percent respectively. The reason may be due to growers forgoing adding expensive copper products with their dormant oil applications.

Herbicide use was influenced by the wet weather. Contact herbicides in general increased in use, led by glyphosate which increased 20 percent, from 161,780 pounds in 2005 to 193,236 pounds, easily outpacing the preplant herbicide oryzalin, which increased 9 percent. Glyphosate accounted for over 60 percent of herbicides used in 2006. Other contact-preemergence herbicides also increased. Paraquat was up 7 percent, 2,4-D up 8 percent and oxyfluorfen, often applied with glyphosate, increased 7 percent. Glyphosate was used on 152,132 acres, a 6 percent increase in treated acres compared to 2005.

#### **Strawberries**

California produces 88 percent of the total U.S. production of 2,400 million pounds of strawberries. California produced 21 million tons valued at more than \$1,194, million. Strawberries are grown mostly for fresh market. Depending on market prices, some are processed. California strawberry production occurs primarily along the central and southern coast, with small but significant production occurring in the Central Valley.


**Table 21A.** Total reported pounds of all active ingredients (AIs), acres treated, acres planted, and prices for strawberries each year from 2002 to 2006. Harvested acres from 2001 to 2005 are from CDFA 2007; harvested acres in 2006 are from NASS, July 2007a; marketing year average prices from 2001 to 2006 from NASS, July 2007b. "cwt" stands for "hundredweight", that is, 100 pounds.

|                 | 2002      | 2003      | 2004      | 2005      | 2006      |
|-----------------|-----------|-----------|-----------|-----------|-----------|
| Lbs Al          | 8,230,420 | 9,193,671 | 9,566,367 | 9,228,548 | 9,381,163 |
| Acres Treated   | 1,003,904 | 1,266,617 | 1,241,172 | 1,279,092 | 1,291,574 |
| Acres Harvested | 28,500    | 29,600    | 33,200    | 34,300    | 35,800    |
| Price \$/cwt    | \$67.40   | \$72.80   | \$62.20   | \$62.60   | \$64.80   |

**Table 21B.** Percent difference from previous year for reported pounds of all AIs, acres treated, acres planted, and prices for strawberries from 2002 to 2006.

|                 | 2002 | 2003 | 2004 | 2005 | 2006 |
|-----------------|------|------|------|------|------|
| Lbs Al          | 4    | 12   | 4    | -4   | 2    |
| Acres Treated   | 14   | 26   | -2   | 3    | 1    |
| Acres Harvested | 8    | 4    | 12   | 3    | 4    |
| Price \$/cwt    | -5   | 8    | -15  | 1    | 4    |

Figure 19. Acres of strawberries treated by all AIs in the major types of pesticides from 1994 to 2006.



**Table 21C**. The non-adjuvant pesticides with the largest change in acres treated of strawberries from 2005 to 2006. This table shows acres treated with AI each year from 2002 to 2006, the change in acres treated and percent change from 2005 to 2006.

|                 |               |         |         |         |         |         |         | Pct    |
|-----------------|---------------|---------|---------|---------|---------|---------|---------|--------|
| Al              | AI TYPE       | 2002    | 2003    | 2004    | 2005    | 2006    | Change  | Change |
| PYRIMETHANIL    | FUNGICIDE     | 0       | 0       | 0       | 0       | 30,419  | 30,419  |        |
| CAPTAN          | FUNGICIDE     | 136,565 | 182,297 | 149,227 | 174,707 | 151,721 | -22,986 | -13    |
| BACILLUS        |               |         |         |         |         |         |         |        |
| THURINGIENSIS   | INSECTICIDE   | 38,519  | 54,141  | 46,042  | 49,546  | 33,769  | -15,776 | -32    |
| MALATHION       | INSECTICIDE   | 41,151  | 41,134  | 48,708  | 37,523  | 28,453  | -9,070  | -24    |
| AZOXYSTROBIN    | FUNGICIDE     | 23,938  | 28,835  | 23,581  | 17,894  | 10,789  | -7,105  | -40    |
| THIAMETHOXAM    | INSECTICIDE   | 0       | 0       | 0       | 0       | 6,830   | 6,830   |        |
| SPIROMESIFEN    | INSECTICIDE   | 0       | 0       | 0       | 4,417   | 10,491  | 6,073   | 137    |
| METHOXYFENOZIDE | E INSECTICIDE | 0       | 0       | 0       | 5,474   | 10,979  | 5,505   | 101    |
| BOSCALID        | FUNGICIDE     | 0       | 8       | 28,072  | 52,115  | 56,963  | 4,847   | 9      |
| BIFENTHRIN      | INSECTICIDE   | 12,161  | 16,622  | 13,469  | 14,428  | 19,184  | 4,756   | 33     |
| CYPRODINIL      | FUNGICIDE     | 16,317  | 25,470  | 21,213  | 33,324  | 28,606  | -4,718  | -14    |
| FLUDIOXONIL     | FUNGICIDE     | 16,317  | 25,470  | 21,213  | 33,324  | 28,606  | -4,718  | -14    |
| POTASSIUM       |               |         |         |         |         |         |         |        |
| BICARBONATE     | FUNGICIDE     | 3,452   | 5,477   | 11,034  | 9,682   | 5,098   | -4,584  | -47    |
| HARPIN PROTEIN  | PGR           | 9,424   | 9,112   | 14,589  | 9,941   | 5,398   | -4,543  | -46    |
| SULFUR          | FUNGICIDE     | 91,964  | 108,330 | 130,906 | 124,754 | 129,056 | 4,302   | 3      |

The amount of strawberry acres treated with pesticides increased 1 percent continuing the upward trend since 2001. Pounds applied increased 2 percent from 2005 to 2006 but remained less than peak application seen in 2004. Pounds of pesticide per acre treated increased 4 percent from 2005 to 2006. Fungicides, followed by insecticides, account for the largest proportion of pesticides applied by acres treated. By acres treated, use of fungicides remained about the same, insecticides decreased by 1 percent and herbicides increased by 9 percent. The major pesticides with greatest increase in acres treated from 2005 to 2006 were pyrimethanil, spiromesifen, methoxyfenozide, boscalid, and bifenthrin. The major pesticides with greatest decreased use by

acres treated were captan, *Bacillus thuringiensis*, malathion, azoxystrobin, thiamethoxam, fludioxonil and potassium bicarbonate.

The major diseases in strawberries are botrytis and powdery mildew. Fungicides continue to be the most used pesticides, as measured by acres treated. The major fungicides by acres treated in 2006 were captan, sulfur, pyraclostrobin, boscalid, fenhexamid, myclobutanil, pyrimethanil, triflumizole, cyprodinil, fludioxonil, thiophanate-methyl, borax, thiram, azoxystrobin, and mefenoxam. In general, fungicides effective against Botrytis fruit rot decreased, and those effective against powdery mildew increased between 2005 and 2006. Dryer conditions in January and February decreased Botrytis risk. The older registered fungicides (captan, thiram, thiophanate-methyl, and benomyl) and the newly registered pyrimethanil, fenhexamid, fludioxonil, cyprodinil, and boscalid are generally used to control Botrytis fruit rot. Acres treated with all of these products decreased in 2006 except boscalid, which increased by 9 percent and pyrimethanil. Boscalid use increased primarily in the costal counties during late winter due to delayed fruit ripening, and because it is also effective against powdery mildew. Pyrimethanil became available in December 2005 and was used to treat 30,419 acres 2006.

Conventional strawberry growers primarily used sulfur, myclobutanil, boscalid, and pyraclostrobin to control powdery mildew. Sulfur is inexpensive and is also used by organic growers. Sulfur, myclobutanil, and triflumizole use increased insignificantly in 2006. Use of azoxystrobin continued to decline because of replacement by boscalid and pyraclostrobin, which are very effective against powdery mildew. Pyraclostrobin is frequently used in combination with boscalid. Both acres treated with these two products and pounds of active ingredient increased in 2005 from 2004 and again in 2006 from 2005. Use of mefenoxam, effective against *Phytophthora fragariae* (red stele) and *P. cactorum* (leather rot and crown rot), increased in 2006 over 2005, a continuation of the upward trend since 2002.

The major insect pests in strawberries are lygus bugs in the northern growing areas. Worms (various moth and beetle larvae) especially cutworms and beet armyworms continue to be particularly troublesome in the southern growing areas. The major insecticides used in 2006 by acres treated were spinosad, *Bacillus thuringiensis* (*Bt*), malathion, bifenazate, fenpropathrin, bifenthrin, naled, and methomyl. Acres treated with malathion, methomyl, and naled, the major broad-spectrum insecticides decreased because of replacement by bifenthrin, methoxyfenozide and spiromesifen. Bifenthrin use increased primarily because wet spring weather allowed weeds and other vegetation to persist longer resulting in larger summer populations of lygus bugs. Spinosad continued in 2006 to be the primary pesticide used to control worms (moth and beetle larvae) and against thrips. Bt (all forms) decreased by 32 percent primarily due to replacement by spinosad, which also is a biological but has a longer residual action and is generally more effective so does not need to be applied as frequently as Bt. However, Bt and the newly registered methoxyfenozide and spiromesifen continue to be widely used to control cutworm and beet armyworm. Fenpropathrin and spiromesifen are used in combination with malathion to control whitefly. Bifenthrin and pyriproxyfen are also effective against white flies. Pyriproxyfen is an insect growth regulator registered in 2002. Lower use of pyriproxyfen was due to partial replacement by spiromesefen and by bifenazate which is also an effective miticide. Perhaps due to recent reductions in cost, imidacloprid use increased by 41 percent as generic products have become available.

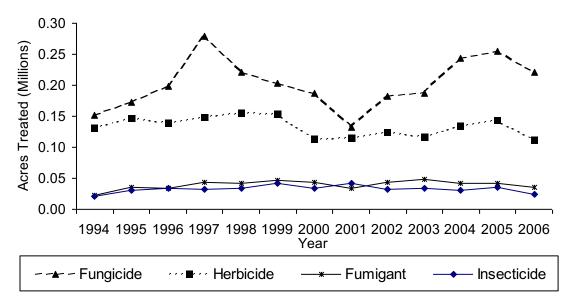
Increased two-spotted spider mite pressure and increased concern about cyclamen mite resulted in increased use of bifenazate, and hexathiazox, as well as the newly registered spiromesifen,

etoxazole, and acequinocyl. Most conventional growers continue to use bifenazate since its introduction in 2003. Use of bifenazate and hexythiazox increased almost to 2004 levels after declines in 2005, while use of spiromesifen, etoxazole and acequinocyl increased by 137 percent, 15 percent and 94 percent respectively.

Strawberry production relies on several fumigants. Acres treated with fumigants increased by 9 percent, including chloropicrin, 1-3 dchloropropene, and methyl bromide while metam sodium and metam potassium decreased. Fumigants usually are applied at higher rates than other pesticide types, such as fungicides and insecticides. Fumigants are applied at high rates, in part, because they treat a volume of space rather than a surface area such as leaves and stems of plants. Thus, the pounds applied are large relative to other pesticide types even though the number of applications or number of acres treated may be relatively small. Fumigants accounted for about 88 percent of all pesticide AIs by pounds applied in strawberries in 2006. Methyl bromide use (pounds) increased in 2006 by 5 percent over the 2005. However, this level remained 3 percent below the level used in 2004 despite a 7 percent increase in acres harvested. Metam sodium is generally more effective in controlling weeds, but less effective than 1,3-D or 1,3-D plus chloropicrin against soil-borne diseases and nematodes.

## **Carrots**

California is the largest producer of carrots in the United States accounting for about 80 percent of the U.S. production of 1,188,360 metric tons of fresh market and 34 percent of the 435,550 tons of processing carrots in 2006. California produced more than 21.2 million tons of carrots with a total crop value of more than \$190 million. California has four main production regions for carrots: the San Joaquin Valley (Kern County), with significant production in Cuyama Valley (San Luis Obispo and Santa Barbara counties); the low desert (Imperial and Riverside counties); the high desert (Los Angeles County); and the central coast (Monterey County). The San Joaquin Valley accounts for more than half the state's acreage.


**Table 22A.** Total reported pounds of all active ingredients (AIs), acres treated, acres planted, and prices for carrots each year from 2002 to 2006. Harvested acres of all carrots from 2001 to 2005 are from CDFA 2007; harvested acres in 2006 are from NASS, January 2007; marketing year average prices from 2001 to 2006 from NASS, July 2007b. "cwt" stands for "hundredweight", that is, 100 pounds.

|                 | 2002      | 2003      | 2004      | 2005      | 2006      |
|-----------------|-----------|-----------|-----------|-----------|-----------|
| Lbs Al          | 7,858,606 | 8,614,858 | 8,076,808 | 9,028,977 | 7,682,706 |
| Acres Treated   | 436,119   | 446,590   | 503,062   | 535,867   | 442,642   |
| Acres Harvested | 71,100    | 71,500    | 70,800    | 71,100    | 73,500    |
| Price \$/cwt    | \$20.30   | \$20.40   | \$21.50   | \$21.70   | \$21.10   |

**Table 22B.** Percent difference from previous year for reported pounds of all AIs, acres treated, acres harvested, and prices for carrots from 2002 to 2006.

|                 | 2002 | 2003 | 2004 | 2005 | 2006 |
|-----------------|------|------|------|------|------|
| Lbs Al          | 19   | 10   | -6   | 12   | -15  |
| Acres Treated   | 19   | 2    | 13   | 7    | -17  |
| Acres Harvested | -2   | 1    | -1   | 0    | 3    |
| Price \$/cwt    | 12   | 0    | 5    | 1    | -3   |

Figure 20. Acres of carrots treated by all AIs in the major types of pesticides from 1994 to 2006.



**Table 22C.** The non-adjuvant pesticides with the largest change in acres treated of carrots from 2005 to 2006. This table shows acres treated with AI each year from 2002 to 2006, the change in acres treated and percent change from 2005 to 2006.

|                              |             |        |        |         |        |        |         | Pct    |
|------------------------------|-------------|--------|--------|---------|--------|--------|---------|--------|
| Al                           | AI TYPE     | 2002   | 2003   | 2004    | 2005   | 2006   | Change  | Change |
| LINURON                      | HERBICIDE   | 71,277 | 65,773 | 75,820  | 82,576 | 62,885 | -19,691 | -24    |
| MEFENOXAM                    | FUNGICIDE   | 87,549 | 80,526 | 102,335 | 97,826 | 80,529 | -17,297 | -18    |
| SULFUR                       | FUNGICIDE   | 17,445 | 16,976 | 28,074  | 46,214 | 32,289 | -13,925 | -30    |
| TRIFLURALIN                  | HERBICIDE   | 36,923 | 39,179 | 39,912  | 41,197 | 33,368 | -7,829  | -19    |
| METAM-SODIUM                 | FUMIGANT    | 32,857 | 35,037 | 28,373  | 31,915 | 24,735 | -7,180  | -22    |
| MEFENOXAM,                   |             |        |        |         |        |        |         |        |
| OTHER RELATED                | FUNGICIDE   | 83,231 | 73,197 | 97,132  | 56,537 | 49,760 | -6,777  | -12    |
| IPRODIONE                    | FUNGICIDE   | 31,256 | 29,185 | 30,034  | 34,140 | 28,273 | -5,867  | -17    |
|                              | FUNGICIDE/  |        |        |         |        |        |         |        |
| OIL                          | INSECTICIDE | 2,066  | 2,296  | 2,285   | 6,637  | 1,065  | -5,572  | -84    |
| ESFENVALERATE                | INSECTICIDE | 9,971  | 11,690 | 6,417   | 14,192 | 10,095 | -4,097  | -29    |
| CHLOROTHALONIL               | FUNGICIDE   | 17,401 | 18,853 | 18,934  | 20,776 | 16,858 | -3,918  | -19    |
| FLUAZIFOP-P-BUTYL            | HERBICIDE   | 13,472 | 7,414  | 11,169  | 15,462 | 12,259 | -3,203  | -21    |
| COPPER                       | FUNGICIDE   | 16,570 | 20,785 | 28,311  | 26,881 | 29,277 | 2,396   | 9      |
| POTASSIUM N-<br>METHYLDITHIO |             |        |        |         |        |        |         |        |
| CARBAMATE                    | FUMIGANT    | 185    |        | 556     | 821    | 2,851  | 2,030   | 247    |
| AZOXYSTROBIN                 | FUNGICIDE   | 12,061 | 8,250  | 8,405   | 6,269  | 8,231  | 1,962   | 31     |
| CARBARYL                     | INSECTICIDE | 1,352  | 156    | 2,279   | 1,914  |        | -1,914  | -100   |

While total acres of carrots harvested increased by 3 percent, pesticide used (as acres treated) in carrots decreased by 17 percent in 2006 after yearly increases since 2001 and pounds of AI applied decreased by 15 percent from 2005 to 2006. All major pesticide types declined in terms of acres treated. Acres treated with fumigants declined by 15 percent, fungicide use declined 13 percent, herbicide use decreased by 22 percent, and insecticide use decreased by 33 percent. Pesticides used most (as measured by acres treated) were mefenoxam, linuron, trifluralin, sulfur, copper compounds, iprodione, metam-sodium, pyraclostrobin, and chlorothalonil. The major pesticides with increased acres treated were copper compounds, metam-potassium, azoxystrobin,

and pyraclostrobin. The major pesticides with decreased acres treated were linuron, mefenoxam, sulfur, oil, trifluralin, and metam-sodium.

Cumulatively, the most used pesticide category for carrots, as measured by acres treated, was fungicides. From 2005 to 2006 acres treated with fungicides decreased 13 percent while pounds decreased by 19 percent. The most applied fungicides in 2006 by acres treated were mefenoxam, sulfur, copper compounds, iprodione, and pyraclostrobin (registered in 2003). Alternaria leaf blight, a foliar disease, is generally controlled by iprodione, chlorothalonil, pyraclostrobin, or azoxystrobin. Azoxystrobin and pyraclostrobin are strobilurins with the same mode of action. In terms of acres treated, pyraclostrobin increased 8 percent and azoxystrobin increased in use 31 percent while iprodione decreased 17 percent and chlorothalonil use decreased 19 percent. Alternaria leaf blight has become less of a problem recently because of the introduction of resistant carrot varieties. Cavity spot is a major, troublesome soilborne fungal disease that is commonly controlled by applying mefenoxam or metam sodium (a soil fumigant). Growers used less mefenoxam (-18 percent) and metam-sodium (-22 percent) by acres treated. These declines were greater than the decline in acres planted. Powdery mildew is primarily controlled by sulfur, which is inexpensive and especially popular with organic growers. Sulfur use decreased in most regions in 2006 because weather conditions decreased powdery mildew infections. Acres treated declined by 91 percent in Los Angeles County because of fewer planted acres.

In terms of acres treated, the main herbicides used in carrot production were linuron, trifluralin, and fluazifop-p-butyl. The two most important are linuron and trifluralin. Linuron, a postemergence herbicide that provides good control of broadleaf weeds and small grasses declined by 24 percent. Trifluralin, a preemergence herbicide, used by carrot growers to complement linuron for weed management, declined by 19 percent. In addition, fluazifop-p-butyl, a selective postemergence phenoxy herbicide used for control of annual and perennial grasses declined 21 percent.

Carrot production relies on the fumigants metam sodium, 1,3-D, and to a lesser extent, chloropicrin. These fumigants are used at high rates in terms of pounds of AI to control soilborne pests. Methyl bromide is no longer used on carrots. In 2006, fumigants accounted for about 78 percent of the total pounds of pesticide AIs applied to carrots. This figure is unchanged from 2005, while acres treated with fumigants declined 17 percent. Use of both 1,3-D and metam sodium declined (-14 and -22 percent acres treated, respectively). Both are used to manage nematodes, depending on population levels. At low to moderate levels of infestation, metam sodium is usually used. If nematode levels are high, fields are treated with 1,3-D. Both metam-sodium and 1,3-D usage were down in 2006 probably because nematodes were less of a problem and because of partial replacement by metam-potassium.

Insects are not generally a major problem in carrot production, except for white flies that are controlled with esfenvalerate and methomyl. The major insecticides used in 2006 in terms of acres treated were esfenvalerate, diazinon, methomyl, cyfluthrin, oil, and spinosad. In 2006, methomyl use by acres treated increased by 92 percent while all other major insecticides decreased. This carbamate pesticide is effective against cutworms and leafhoppers as well as whiteflies. Acres treated with esfenvalerate, generally used to control white fly and flea beetle but also against leafhoppers and cutworms, decreased by 29 percent. Spinosad use against armyworms, loopers, saltmarsh caterpillars, and cutworms decreased by 65 percent. Oil use decreased by 84 percent. Cyfluthrin, a pyrethroid used to control cutworm and crown root aphids, decreased by 42 percent. Diazinon use against cutworms and wireworms declined 13

percent. Carbaryl use was absent in 2006. Foliar spray formulations of carbaryl have been used for control of armyworms, leafhoppers, and flea beetles, while bait formulations primarily for saltmarsh caterpillars and cutworms.

#### **Sources of Information**

Adaskaveg, J., Holtz, J, Michailides, T, and D. Gubler. 2007. Efficacy and Timing of Fungicides, Bactericides, and Biologicals for Deciduous Tree Fruit, Nut Crops, and Grapevines.

University of California, Riverside and Davis; University of California Cooperative Extension, Madera County; and the University of California, Davis/Kearney Agricultural Center. Linked to Pest Management Guidelines on the UC IPM Web site, <a href="http://www.ipm.ucdavis.edu">http://www.ipm.ucdavis.edu</a>.

Almond Board of California. <a href="http://www.almondboard.com">http://www.almondboard.com</a>>.

Blue Diamond Growers. < <a href="http://www.bluediamond.com">http://www.bluediamond.com</a>>.

California Department of Food and Agriculture (CDFA), 2006. California Agriculture Resource Directory 2006.

# **County Agricultural Commissioners**

#### Growers

National Agricultural Statistics Service (NASS). July 2003. Agricultural Prices 2002 Summary. USDA. Pr 1-3 (03)a.

NASS, January 2004, Vegetables 2003 Summary. USDA. Vg 1-2 (04)

NASS. July 2004. Agricultural Prices 2003 Summary. USDA. Pr 1-3 (04).

NASS, July 2005, Agricultural Prices 2004 Summary. USDA. Pr 1-3 (05)a.

NASS, July 2006, Agricultural Prices 2005 Summary. USDA. Pr 1-3 (06).

NASS, September 2006, Citrus Fruits 2006 Summary. USDA. Fr Nt 3-1 (06)

NASS, January 2007, Vegetables 2006 Summary. USDA. Vg 1-2 (07)

NASS, March 2007, 2006 California Grape Acreage Report

NASS, May 2007a. 2006 California Almond Acreage Report

NASS, May 2007b, California Processing Tomato Report

NASS, June 2007. Acreage. USDA. Cr Pr 2-5 (6-07)

NASS, July 2007a, Noncitrus Fruits and Nuts 2006 Summary USDA. Fr Nt 1-3 (07)

NASS, July 2007b, Agricultural Prices 2006 Summary. USDA. Pr 1-3 (07).

#### Pest Control Advisors

#### **Private Consultants**

University of California Cooperative Extension Area IPM Advisors

UC Cooperative Extension Farm Advisors

UC Cooperative Extension Specialists

UC Researchers